Optimal linear estimators for multi-sensor stochastic uncertain systems with packet losses of both sides

2015 ◽  
Vol 37 ◽  
pp. 24-34 ◽  
Author(s):  
Jing Ma ◽  
Shuli Sun
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Yazhou Li ◽  
Jiayi Li ◽  
Xin Wang

The optimal linear estimation problems are investigated in this paper for a class of discrete linear systems with fading measurements and correlated noises. Firstly, the fading measurements occur in a random way where the fading probabilities are regulated by probability mass functions in a given interval. Furthermore, time-delay exists in the system state and observation simultaneously. Additionally, the multiplicative noises are considered to describe the uncertainty of the state. Based on the projection theory, the linear minimum variance optimal linear estimators, including filter, predictor, and smoother are presented in the paper. Compared with conventional state augmentation, the new algorithm is finite-dimensionally computable and does not increase computational and storage load when the delay is large. A numerical example is provided to illustrate the effectiveness of the proposed algorithms.


2003 ◽  
Vol 90 (2) ◽  
pp. 549-558 ◽  
Author(s):  
S. Ben Hamed ◽  
W. Page ◽  
C. Duffy ◽  
A. Pouget

Basis functions have been extensively used in models of neural computation because they can be combined linearly to approximate any nonlinear functions of the encoded variables. We investigated whether dorsal medial superior temporal (MSTd) area neurons use basis functions to simultaneously encode heading direction, eye position, and the velocity of ocular pursuit. Using optimal linear estimators, we first show that the head-centered and eye-centered position of a focus of expansion (FOE) in optic flow, pursuit direction, and eye position can all be estimated from the single-trial responses of 144 MSTd neurons with an average accuracy of 2–3°, a value consistent with the discrimination thresholds measured in humans and monkeys. We then examined the format of the neural code for the head-centered position of the FOE, eye position, and pursuit direction. The basis function hypothesis predicts that a large majority of cells in MSTd should encode two or more signals simultaneously and combine these signals nonlinearly. Our analysis shows that 95% of the neurons encode two or more signals, whereas 76% code all three signals. Of the 95% of cells encoding two or more signals, 90% show nonlinear interactions between the encoded variables. These findings support the notion that MSTd may use basis functions to represent the FOE in optic flow, eye position, and pursuit.


Sign in / Sign up

Export Citation Format

Share Document