A new Gaussian approximate filter with colored non-stationary heavy-tailed measurement noise

2021 ◽  
pp. 103358
Author(s):  
Chenghao Shan ◽  
Weidong Zhou ◽  
Zihao Jiang ◽  
Hanyu Shan
2020 ◽  
Vol 53 (2) ◽  
pp. 368-373
Author(s):  
Guangle Jia ◽  
Yulong Huang ◽  
Mingming B. Bai ◽  
Yonggang zhang

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3611
Author(s):  
Yang Gong ◽  
Chen Cui

In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter is a practical algorithm. Influenced by outliers under unknown heavy-tailed measurement noise, the SMC-PHD filter suffers severe performance degradation. In this paper, a robust SMC-PHD (RSMC-PHD) filter is proposed. In the proposed filter, Student-t distribution is introduced to describe the unknown heavy-tailed measurement noise where the degrees of freedom (DOF) and the scale matrix of the Student-t distribution are respectively modeled as a Gamma distribution and an inverse Wishart distribution. Furthermore, the variational Bayesian (VB) technique is employed to infer the unknown DOF and scale matrix parameters while the recursion estimation framework of the RSMC-PHD filter is derived. In addition, considering that the introduced Student- t distribution might lead to an overestimation of the target number, a strategy is applied to modify the updated weight of each particle. Simulation results demonstrate that the proposed filter is effective with unknown heavy-tailed measurement noise.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Liming Hou ◽  
Feng Lian ◽  
Shuncheng Tan ◽  
Congan Xu ◽  
Giuseppe Thadeu Freitas De Abreu

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1351
Author(s):  
Chenghao Shan ◽  
Weidong Zhou ◽  
Yefeng Yang ◽  
Hanyu Shan

In this paper, a new variational Bayesian-based Kalman filter (KF) is presented to solve the filtering problem for a linear system with unknown time-varying measurement loss probability (UTVMLP) and non-stationary heavy-tailed measurement noise (NSHTMN). Firstly, the NSHTMN was modelled as a Gaussian-Student’s t-mixture distribution via employing a Bernoulli random variable (BM). Secondly, by utilizing another Bernoulli random variable (BL), the form of the likelihood function consisting of two mixture distributions was converted from a weight sum to an exponential product and a new hierarchical Gaussian state-space model was therefore established. Finally, the system state vector, BM, BL, the intermediate random variables, the mixing probability, and the UTVMLP were jointly inferred by employing the variational Bayesian technique. Simulation results revealed that in the scenario of NSHTMN, the proposed filter had a better performance than current algorithms and further improved the estimation accuracy of UTVMLP.


2006 ◽  
Vol 11 (1) ◽  
pp. 12-24 ◽  
Author(s):  
Alexander von Eye

At the level of manifest categorical variables, a large number of coefficients and models for the examination of rater agreement has been proposed and used. The most popular of these is Cohen's κ. In this article, a new coefficient, κ s , is proposed as an alternative measure of rater agreement. Both κ and κ s allow researchers to determine whether agreement in groups of two or more raters is significantly beyond chance. Stouffer's z is used to test the null hypothesis that κ s = 0. The coefficient κ s allows one, in addition to evaluating rater agreement in a fashion parallel to κ, to (1) examine subsets of cells in agreement tables, (2) examine cells that indicate disagreement, (3) consider alternative chance models, (4) take covariates into account, and (5) compare independent samples. Results from a simulation study are reported, which suggest that (a) the four measures of rater agreement, Cohen's κ, Brennan and Prediger's κ n , raw agreement, and κ s are sensitive to the same data characteristics when evaluating rater agreement and (b) both the z-statistic for Cohen's κ and Stouffer's z for κ s are unimodally and symmetrically distributed, but slightly heavy-tailed. Examples use data from verbal processing and applicant selection.


Sign in / Sign up

Export Citation Format

Share Document