scholarly journals A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3611
Author(s):  
Yang Gong ◽  
Chen Cui

In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter is a practical algorithm. Influenced by outliers under unknown heavy-tailed measurement noise, the SMC-PHD filter suffers severe performance degradation. In this paper, a robust SMC-PHD (RSMC-PHD) filter is proposed. In the proposed filter, Student-t distribution is introduced to describe the unknown heavy-tailed measurement noise where the degrees of freedom (DOF) and the scale matrix of the Student-t distribution are respectively modeled as a Gamma distribution and an inverse Wishart distribution. Furthermore, the variational Bayesian (VB) technique is employed to infer the unknown DOF and scale matrix parameters while the recursion estimation framework of the RSMC-PHD filter is derived. In addition, considering that the introduced Student- t distribution might lead to an overestimation of the target number, a strategy is applied to modify the updated weight of each particle. Simulation results demonstrate that the proposed filter is effective with unknown heavy-tailed measurement noise.

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1120 ◽  
Author(s):  
Xiaolong Hu ◽  
Hongbing Ji ◽  
Long Liu

Adaptively modeling the target birth intensity while maintaining the filtering efficiency is a challenging issue in multi-target tracking (MTT). Generally, the target birth probability is predefined as a constant and only the target birth density is considered in existing adaptive birth models, resulting in deteriorated target tracking accuracy, especially in the target appearing cases. In addition, the existing adaptive birth models also give rise to a decline in operation efficiency on account of the extra birth modeling calculations. To properly adapt the real variation of the number of newborn targets and improve the multi-target tracking performance, a novel fast sequential Monte Carlo (SMC) adaptive target birth intensity cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter is proposed in this paper. Through adaptively conducting the target birth probability in a pre-processing step, which incorporates the information of current measurements to correct the pre-setting of the target birth probability, the proposed filter can truly adapt target birth cases and achieve better tracking accuracy. Moreover, the implementation efficiency can be improved significantly by employing a measurement noise-based threshold in the likelihood calculations of the multi-target updating. Simulation results verify the effectiveness of the proposed filter.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4115 ◽  
Author(s):  
Feng Lian ◽  
Liming Hou ◽  
Bo Wei ◽  
Chongzhao Han

A new optimization algorithm of sensor selection is proposed in this paper for decentralized large-scale multi-target tracking (MTT) network within a labeled random finite set (RFS) framework. The method is performed based on a marginalized δ-generalized labeled multi-Bernoulli RFS. The rule of weighted Kullback-Leibler average (KLA) is used to fuse local multi-target densities. A new metric, named as the label assignment (LA) metric, is proposed to measure the distance for two labeled sets. The lower bound of LA metric based mean square error between the labeled multi-target state set and its estimate is taken as the optimized objective function of sensor selection. The proposed bound is obtained by the information inequality to RFS measurement. Then, we present the sequential Monte Carlo and Gaussian mixture implementations for the bound. Another advantage of the bound is that it provides a basis for setting the weights of KLA. The coordinate descent method is proposed to compromise the computational cost of sensor selection and the accuracy of MTT. Simulations verify the effectiveness of our method under different signal-to- noise ratio scenarios.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2842 ◽  
Author(s):  
Sen Wang ◽  
Qinglong Bao ◽  
Zengping Chen

Radar target detection probability will decrease as the target echo signal-to-noise ratio (SNR) decreases, which has an adverse influence on the result of multi-target tracking. The performances of standard multi-target tracking algorithms degrade significantly under low detection probability in practice, especially when continuous miss detection occurs. Based on sequential Monte Carlo implementation of Probability Hypothesis Density (PHD) filter, this paper proposes a heuristic method called the Refined PHD (R-PHD) filter to improve multi-target tracking performance under low detection probability. In detail, this paper defines a survival probability which is dependent on target state, and labels individual extracted targets and corresponding particles. When miss detection occurs due to low detection probability, posterior particle weights will be revised according to the prediction step. Finally, we transform the target confirmation problem into a hypothesis test problem, and utilize sequential probability ratio test to distinguish real targets and false alarms in real time. Computer simulations with respect to different detection probabilities, average numbers of false alarms and continuous miss detection durations are provided to corroborate the superiority of the proposed method, compared with standard PHD filter, Cardinalized PHD (CPHD) filter and Cardinality Balanced Multi-target Multi-Bernoulli (CBMeMBer) filter.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4226 ◽  
Author(s):  
Rang Liu ◽  
Hongqi Fan ◽  
Tiancheng Li ◽  
Huaitie Xiao

A forward–backward labeled multi-Bernoulli (LMB) smoother is proposed for multi-target tracking. The proposed smoother consists of two components corresponding to forward LMB filtering and backward LMB smoothing, respectively. The former is the standard LMB filter and the latter is proved to be closed under LMB prior. It is also shown that the proposed LMB smoother can improve both the cardinality estimation and the state estimation, and the major computational complexity is linear with the number of targets. Implementation based on the Sequential Monte Carlo method in a representative scenario has demonstrated the effectiveness and computational efficiency of the proposed smoother in comparison to existing approaches.


Author(s):  
O. D. Adubisi ◽  
A. Abdulkadir ◽  
H. Chiroma ◽  
U. F. Abbas

In this article a new generalization of the skew student-t distribution was introduced. The two-parameter model called the type I half-logistic skew-t (TIHLST) distribution can fit skewed, heavy-right tail, and long-tail datasets. Statistical properties of the type I half-logistic skew-t (TIHLST) distribution were derived and the maximum likelihood method parameter estimates assessed through a simulation study. A well-known dataset was analysed, illustrating the usefulness of the new distribution in modeling skewed and heavy-tailed data. The hazard rate shape was found to be increasing, decreasing and inverted bathtub shaped which was also reflected in the application result.


Sign in / Sign up

Export Citation Format

Share Document