Paired N and O isotopic analysis of nitrate and nitrite in the Arabian Sea oxygen deficient zone

2017 ◽  
Vol 121 ◽  
pp. 121-131 ◽  
Author(s):  
T.S. Martin ◽  
K.L. Casciotti
2006 ◽  
Vol 3 (3) ◽  
pp. 665-695 ◽  
Author(s):  
S. W. A. Naqvi ◽  
H. Naik ◽  
A. Pratihary ◽  
W. D’ Souza ◽  
P. V. Narvekar ◽  
...  

Abstract. The Arabian Sea contains one of the three major open-ocean denitrification zones in the world. In addition, pelagic denitrification also occurs over the inner and mid-shelf off the west coast of India. The major differences between the two environments are highlighted using the available data. The perennial open-ocean system occupies two orders of magnitude larger volume than the seasonal coastal system, however, the latter offers more extreme conditions (greater nitrate consumption leading to complete anoxia). Unlike the open-ocean system, the coastal system seems to have undergone a change (i.e., it has intensified) over the past few decades presumably due to enhanced nutrient loading from land. The two systems also differ from each other with regard to the modes of nitrous oxide (N2O) production: in the open-ocean suboxic zone, an accumulation of secondary nitrite (NO2−) is invariably accompanied by depletion of N2O whereas in the coastal suboxic zone high NO2− and very high N2O concentrations frequently co-occur, indicating, respectively, net consumption and net production of N2O by denitrifiers. The extents of heavier isotope enrichment in the combined nitrate and nitrite (NO3−+NO2−) pool and in N2O in reducing waters appear to be considerably smaller in the coastal region, reflecting more varied sources/sinks and/or different isotopic fractionation factors.


2017 ◽  
Vol 8 (2) ◽  
pp. 313-321 ◽  
Author(s):  
Shaakir Shabir Dar ◽  
Prosenjit Ghosh

Abstract. Moisture sources responsible for rains over Kolkata during the summer monsoon can be traced using backward air-mass trajectory analysis. A summary of such trajectories between June and September suggest that these moisture parcels originate from the Arabian Sea and travel over the dry continental region and over the Bay of Bengal (BoB) prior to their arrival at Kolkata. We use monthly satellite and ground-based observations of the hydrometeorological variables together with isotopic data of rainwater from Bangalore and Kakinada to quantify the contributions of advected continental and oceanic water vapour in the Kolkata rains. The vapour mass is modified during its transit from its original isotopic value due to addition of evaporated moisture from the BoB, and further modification occurs due to the process of rainout during transport. The evaporated component is estimated using the Craig–Gordon equation. The rainout process is simulated using a Rayleigh fractionation model. In this simulation we assume that the initial isotopic composition of vapour originating from the continent is similar to the rainwater composition measured at Bangalore. In order to explain the monthly isotopic composition in southwest monsoon rainwater at Kolkata, we invoke 65–75 % moisture contribution from the BoB; the remaining moisture is from the continental land mass.


2006 ◽  
Vol 3 (4) ◽  
pp. 621-633 ◽  
Author(s):  
S. W. A. Naqvi ◽  
H. Naik ◽  
A. Pratihary ◽  
W. D'Souza ◽  
P. V. Narvekar ◽  
...  

Abstract. The Arabian Sea contains one of the three major open-ocean denitrification zones in the world. In addition, pelagic denitrification also occurs over the inner and mid-shelf off the west coast of India. The major differences between the two environments are highlighted using the available data. The perennial open-ocean system occupies two orders of magnitude larger volume than the seasonal coastal system, however, the latter offers more extreme conditions (greater nitrate consumption leading to complete anoxia). Unlike the open-ocean system, the coastal system seems to have undergone a change (i.e., it has intensified) over the past few decades presumably due to enhanced nutrient loading from land. The two systems also differ from each other with regard to the modes of nitrous oxide (N2O) production: In the open-ocean suboxic zone, an accumulation of secondary nitrite (NO2−) is invariably accompanied by depletion of N2O whereas in the coastal suboxic zone high NO2− and very high N2O concentrations frequently co-occur, indicating, respectively, net consumption and net production of N2O by denitrifiers. The extents of heavier isotope enrichment in the combined nitrate and nitrite (NO3−+NO2−) pool and in N2O in reducing waters appear to be considerably smaller in the coastal region, reflecting more varied sources/sinks and/or different isotopic fractionation factors.


2013 ◽  
Vol 27 (4) ◽  
pp. 1059-1071 ◽  
Author(s):  
Birgit Gaye ◽  
Birgit Nagel ◽  
Kirstin Dähnke ◽  
Tim Rixen ◽  
Kay-Christian Emeis

Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
N Ebrahimi ◽  
M Moein ◽  
S Moein

2014 ◽  
Vol 73 (1) ◽  
pp. 51-67 ◽  
Author(s):  
A Jain ◽  
M Bandekar ◽  
J Gomes ◽  
D Shenoy ◽  
RM Meena ◽  
...  

2012 ◽  
Vol 2 (6) ◽  
pp. 271-272
Author(s):  
Sudhir Pal Singh Rawat ◽  
◽  
Dr. Arnab Das ◽  
Dr. H.G.Virani Dr. H.G.Virani ◽  
Dr. Y.K.Somayajulu Dr. Y.K.Somayajulu

Sign in / Sign up

Export Citation Format

Share Document