cometary material
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Denis Vida ◽  
Peter Brown ◽  
Hadrien Devillepoix ◽  
Paul Wiegert ◽  
Danielle Moser ◽  
...  

Abstract The Oort cloud is thought to be a reservoir of icy planetesimals and a source of long-period comets (LPCs) implanted from the outer Solar System during the time of giant planet formation. The presence of rocky ice-free bodies is much harder to explain. The rocky fraction in the Oort cloud is a key diagnostic of Solar System formation models as this ratio can distinguish between "massive" and "depleted" proto-asteroid belt scenarios and thus disentangle competing planet formation models. Objects of asteroidal appearance have been telescopically observed on LPC orbits, but from reflectance spectra alone it is uncertain whether they are asteroids or extinct comets. Here we report a first direct observation of a decimeter-sized rocky meteoroid on a retrograde LPC orbit (e ≈ 1.0, i = 121°). The ~2 kg object entered the atmosphere at 62 km/s. The associated fireball terminated at 46.5 km, 40 km deeper than cometary objects of similar mass and speed. During its flight, it experienced dynamic pressures of several MPa, comparable to meteorite-dropping fireballs. In contrast, cometary material measured by Rosetta have compressive strengths of ~1 kPa. The earliest fragmentation of this fireball occurred at >100 kPa, indicating it had a minimum global strength well in excess of cometary. A numerical ablation model produces bulk density and ablation properties consistent with asteroidal meteoroids. We estimate the flux of rocky objects impacting Earth from the Oort cloud to be ~0.7 × 106 km2 per year to a mass limit of 10 g. This is ~6% of the total flux of fireballs on LPC-orbits to these masses. Our results suggests there is a high fraction of asteroidal material in the Oort cloud at small sizes and gives support to migration-based dynamical models of the formation of the Solar System which predict that significant rocky material is implanted in the Oort cloud, a result not explained by traditional Solar System formation models.


2021 ◽  
Author(s):  
Natalia Esteves Lopez ◽  
Aurélie Guilbert-Lepoutre ◽  
Stéphane Coussan ◽  
Joëlle Mascetti ◽  
Arnaud Desmedt ◽  
...  

<p>Comet nuclei in the transneptunian region are submitted to  heating at temperatures from 30 to 50 K over the age of the solar system [1]. The timescale for sublimated volatiles to escape the objects at these temperatures is long though [1]. Once these nuclei enter the inner solar system and become active, subsurface sublimation puts a gas phase in contact of the porous and tortuous ice structure of cometary material. In this context, the formation of clathrate hydrates may be considered as a plausible trapping mechanism of these gases, occurring in subsurface layers, and allowing some of the most volatile species to subsequently survive in cometary material at temperatures higher than the sublimation temperature of the corresponding pure solid [2]. </p> <p>Hydrates are ice-like crystalline compounds, resulting from the tridimensional stacking of cages of H-bonded water molecules. Clathrates are gas hydrates, meaning that the guests are gas molecules encased in a host framework of water molecules. Gas hydrates only form and remain stable in specific temperature and pressure regimes that depend on the nature of the guest molecules [3]. Theoretical phase diagram of clathrate hydrates show that it would be possible to form clathrates at very low pressure (10<sup>-10</sup> bar) and temperature (< 80 K), but there is a critical lack of experimental data using these preparation methods [4]. Could clathrate hydrates be formed under conditions relevant to the interior of comet nuclei?  The formation and characterization of these ice-like structures under such conditions could provide valuable experimental evidence for understanding the preservation of some volatile species during the thermally-induced evolution of comets. </p> <p>In an effort to assess whether hydrates may play a role in maintaining volatile species in cometary material, FTIR spectroscopic identification of several species have been performed. We present results related to carbon dioxide and methane hydrates, in conditions relevant to cometary nuclei, i.e. at low temperature (10 K) and pressure (base pressure 10<sup>-7</sup> mbar) regimes. To understand the nature of the gas hydrates formed under these conditions, vibrational spectra of distinct gas/ice interactions (clathrate hydrate, gas in/on water ice) were compared. The behaviour of the water crystalline skeleton interactions with the trapped molecules at different temperatures, as well as the influence of the gas mixture and the deposition method, will be presented.</p> <p> </p> <p><strong>Acknowledgements</strong></p> <p>This study is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 802699).<span class="Apple-converted-space"> </span></p> <p> </p> <p>[1] Prialnik et al. (2004) in Comets II, Festou, Keller and Weaver (Eds.), 359-387</p> <p>[2] Mandt et al. (2017) in Comets as Tracers of Solar System Formation and Evolution, Mandt, Mousis, Bockel{\'e}e-Morvan and Russel (Eds.)</p> <p>[3] Sloan (2003) Nature, 426, 353-359</p> <p>[4] Choukroun et al. (2003) in The Science of Solar System Ices, Gudipati and Castillo-Roguez (Eds.), 409-454 </p>


2020 ◽  
Vol 643 ◽  
pp. A163
Author(s):  
Belén Maté ◽  
Stéphanie Cazaux ◽  
Miguel Ángel Satorre ◽  
Germán Molpeceres ◽  
Juan Ortigoso ◽  
...  

Context. The diffusion of volatile species on amorphous solid water ice affects the chemistry on dust grains in the interstellar medium as well as the trapping of gases enriching planetary atmospheres or present in cometary material. Aims. The aim of the work is to provide diffusion coefficients of CH4 on amorphous solid water (ASW) and to understand how they are affected by the ASW structure. Methods. Ice mixtures of H2O and CH4 were grown in different conditions and the sublimation of CH4 was monitored via infrared spectroscopy or via the mass loss of a cryogenic quartz crystal microbalance. Diffusion coefficients were obtained from the experimental data assuming the systems obey Fick’s law of diffusion. Monte Carlo simulations were used to model the different amorphous solid water ice structures investigated and were used to reproduce and interpret the experimental results. Results. Diffusion coefficients of methane on amorphous solid water have been measured to be between 10−12 and 10−13 cm2 s−1 for temperatures ranging between 42 K and 60 K. We show that diffusion can differ by one order of magnitude depending on the morphology of amorphous solid water. The porosity within water ice and the network created by pore coalescence enhance the diffusion of species within the pores. The diffusion rates derived experimentally cannot be used in our Monte Carlo simulations to reproduce the measurements. Conclusions. We conclude that Fick’s laws can be used to describe diffusion at the macroscopic scale, while Monte Carlo simulations describe the microscopic scale where trapping of species in the ices (and their movement) is considered.


2020 ◽  
Vol 497 (2) ◽  
pp. 1536-1542
Author(s):  
Evgenij Zubko ◽  
Maxim Zheltobryukhov ◽  
Ekaterina Chornaya ◽  
Anton Kochergin ◽  
Gorden Videen ◽  
...  

ABSTRACT We observe Comet C/2019 Y4 (ATLAS) before and after its disintegration while making polarimetric measurements over a wide range of phase angles. The disintegration event was marked with a dramatic growth of the positive polarization branch that is consistent with a large relative abundance of absorbing material of up to (96.5 ± 3.4) per cent. This polarization spike relaxed as the carbonaceous particles are preferentially swept from the coma due to solar-radiation pressure. The observations suggest that the primordial material stored within comets is extremely rich in carbonaceous material. The pristine cometary material is processed by subsequent solar interactions, forming a refractory crust on the nucleus surface. Polarimetry provides a means of measuring the volume ratio of carbonaceous material, and hence the weathering that has occurred on the comet due to these interactions. The polarimetric response of Comet C/2019 Y4 (ATLAS) appears similar to that of Comet C/1995 O1 (Hale-Bopp), except on few epochs that are similar to that of Comet C/1996 B2 (Hyakutake).


2020 ◽  
Vol 55 (6) ◽  
pp. 1349-1370 ◽  
Author(s):  
Brendan A. Haas ◽  
Christine Floss ◽  
Rhonda M. Stroud ◽  
Ryan C. Ogliore

2019 ◽  
Vol 630 ◽  
pp. L7
Author(s):  
C. Wöhler ◽  
A. Grumpe ◽  
M. Bhatt ◽  
A. A. Berezhnoy ◽  
V. V. Shevchenko ◽  
...  

Using the near-infrared spectral reflectance data of the Chandrayaan-1 Moon Mineralogy Mapper (M3) instrument, we report an unusually bright structure of 30 × 60 km2 on the lunar equatorial farside near crater Dufay. At this location, the 3-μm absorption band feature, which is commonly ascribed to hydroxyl (OH) and/or water (H2O), at local midday is significantly (∼30%) stronger than on the surrounding surface and, surprisingly, stronger than in the illuminated polar highlands. We did not find a similar area of excessively strong 3-μm absorption anywhere else on the Moon. A possible explanation for this structure is the recent infall of meteoritic or cometary material of high OH/H2O content forming a thin layer detectable by its pronounced 3-μm band, where a small amount of the OH/H2O is adsorbed by the surface material into binding states of relatively high activation energy. Detailed analysis of this structure with next-generation spacecraft instrumentation will provide further insight into the processes that lead to the accumulation of OH/H2O in the lunar regolith surface.


2019 ◽  
Vol 490 (1) ◽  
pp. 1325-1331 ◽  
Author(s):  
M A Ayouz ◽  
C H Yuen ◽  
N Balucani ◽  
C Ceccarelli ◽  
I F Schneider ◽  
...  

ABSTRACT Formamide is a potentially important molecule in the context of pre-biotic chemistry, since reactions involving it can lead to precursors of genetic and metabolic molecules. Being abundant in cometary material and in star-forming regions, the formation and destruction routes of interstellar formamide have been the focus of several studies. In this work, we focus on the electron recombination of protonated formamide, an important step of its destruction routes, by performing rigorous ab initio calculations of this process. We found that our values are in good agreement with previous qualitative estimates of the global rate coefficients. On the contrary, we propose a substantial revision of the products and branching ratios. Finally, we justify and emphasize the importance of carrying out similar theoretical calculations on the largest possible number of complex species of astrochemical interest.


2019 ◽  
Vol 630 ◽  
pp. A46 ◽  
Author(s):  
P. Heinisch ◽  
H.-U. Auster ◽  
I. Richter ◽  
K. H. Glassmeier

Context. The landing of the Philae probe as part of the ESA Rosetta mission made it possible to study the magnetization of comet 67P/Churyumov-Gerasimenko (67P) by combining observations from the lander and orbiter. In this work, we revisit the magnetic properties with information gained during the progression of the mission for a comprehensive understanding of the circumstances of Philae’s descent and landing. Aims. The aim is to derive a limit for any possible magnetization of the cometary material on the surface of 67P. To achieve this, the surface contacts of Philae were analyzed. Combined with a more detailed understanding of the background magnetic field, this allows us to interpret the underlying magnetic measurements in detail. Methods. We combined magnetic field observations from the ROMAP magnetometer on board Philae with observations from the RPC-MAG instrument on board the Rosetta orbiter. To facilitate this, a correlation analysis was used to correct phase shifts between the observed signals. Additionally, in-flight calibration of the ROMAP offsets was performed using information about the dynamics of Philae during flight. These corrections made it possible to use the orbiter measurements as reference for the comet-based Philae observations. We assumed a simple dipole model and used the magnetic field observations to derive an upper limit for the magnetization of the cometary material. Results. An upper limit of 0.9 nT for the observed magnetic field on the surface of 67P was derived for any contribution from surface magnetization. For homogeneously magnetized pebbles with a size of typical aggregates in the range of ~5 cm, this translates into an upper limit of ~5 × 10−5 Am2 kg−1 for the specific magnetic moment. Depending on the exact history of formation, this results in an upper limit of 4 μT for the magnitude of the magnetic field in the solar nebula during the formation of comet 67P.


2018 ◽  
Vol 479 (2) ◽  
pp. 1651-1671 ◽  
Author(s):  
Sebastian Marino ◽  
Amy Bonsor ◽  
Mark C Wyatt ◽  
Quentin Kral
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document