Laboratory and in-situ analysis of comet dust

Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.

2003 ◽  
Vol 20 (4) ◽  
pp. 356-370 ◽  
Author(s):  
M. Busso ◽  
R. Gallino ◽  
G. J. Wasserburg

AbstractWe discuss possible stellar origins of short-lived radioactive nuclei with meanlife τ ≤ 100 Myr, which were shown to be alive in the Early Solar System (ESS). We first review current ideas on the production of nuclides having 10 ≤ τ ≤ 100 Myr, which presumably derive from the continuous interplay of galactic astration, nucleosynthesis from massive supernovae and free decay in the interstellar medium. The abundance of the shorter lived 53Mn might be explained by this same scenario. Then we consider the nuclei 107Pd, 26Al, 41Ca and 60Fe, whose early solar system abundances are too high to have originated in this way. Present evidence favours a stellar origin, particularly for 107Pd, 26Al and 60Fe, rather than an in situ production by energetic solar particles. The idea of an encounter (rather close in time and space) between the forming Sun and a dying star is therefore discussed: this star may or may not have also triggered the solar formation. Recent nucleosynthesis calculations for the yields of the relevant short-lived isotopes and of their stable reference nuclei are discussed. Massive stars evolving to type II supernovae (either leaving a neutron star or a black hole as a remnant) seem incapable of explaining the four most critical ESS radioactivities in their observed abundance ratios. An asymptotic giant branch (AGB) star seems to be a viable source, especially if of relatively low initial mass (M ≤ 3 M⊙) and with low neutron exposure: this model can provide a solution for 26Al, 41Ca and 107Pd, with important contributions to 60Fe, which are inside the present uncertainty range of the 60Fe early solar system abundance. Such a model requires that 26Al is produced substantially on the AGB by cool bottom processing. The remaining inventory of short-lived species in the solar nebula would then be attributed to the continuous galactic processing, with the exception of 10Be, which must reflect production by later proton bombardment at a low level during early solar history.


2009 ◽  
Vol 5 (H15) ◽  
pp. 746-747
Author(s):  
Thierry Montmerle ◽  
Matthieu Gounelle ◽  
Georges Meynet

AbstractThe early solar system represents the only case we have of a circumstellar disk that can be investigated “in situ” -albeit 4.6 Gyr after its formation. Meteorites studies give mounting evidence for an intense irradiation phase of the young circumsolar disk by energetic particles, and also for contamination by products of high-mass stellar and/or explosive nucleosynthesis. We thus discuss the conditions of the birth of the solar system in a high-mass star environment.


2020 ◽  
Author(s):  
Linda Podio ◽  
Antonio Garufi ◽  
Claudio Codella ◽  
Davide Fedele ◽  
Kazi Rygl ◽  
...  

<p>How have planets formed in the Solar System? And what chemical composition they inherited from their natal environment? Is the chemical composition passed unaltered from the earliest stages of the formation of the Sun to its disk and then to the planets which assembled in the disk? Or does it reflects chemical processes occurring in the disk and/or during the planet formation process? And what was the role of comets in the delivery of volatiles and prebiotic compounds to early Earth?</p> <p>A viable way to answer these questions is to observe protoplanetary disks around young Sun-like stars and compare their chemical composition with that of the early Solar System, which is imprinted in comets. The impacting images recently obtained by millimetre arrays of antennas such as ALMA provided the first observational evidence of ongoing planet formation in 0.1-1 million years old disks, through rings and gaps in their dust and gas distribution. The chemical composition of the forming planets and small bodies clearly depends on the location and timescale for their formation and is intimately connected to the spatial distribution and abundance of the various molecular species in the disk. The chemical characterisation of disks is therefore crucial.</p> <p>This field, however, is still in its infancy, because of the small sizes of disks (~100 au) and to the low gas-phase abundance of molecules (abundances with respect to H<sub>2</sub> down to 10<sup>-12</sup>), which requires an unprecedented combination of angular resolution and sensitivity. I will show the first pioneering results obtained as part of the ALMA chemical survey of protoplanetary disks in the Taurus star forming region (ALMA-DOT program). Thanks to the ALMA images at ~20 au resolution, we recovered the radial distribution and abundance of diatomic molecules (CO and CN), S-bearing molecules (CS, SO, SO<sub>2</sub>, H<sub>2</sub>CS), as well as simple organics (H<sub>2</sub>CO and CH<sub>3</sub>OH) which are key for the formation of prebiotic compounds. Enhanced H<sub>2</sub>CO emission in the cold outer disk, outside the CO snowline, suggests that organic molecules may be efficiently formed in disks on the icy mantles of dust grain. This could be the dawn of ice chemistry in the disk, producing ices rich of complex organic molecules (COMs) which could be incorporated by the bodies forming in the outer disk region, such as comets.<span class="Apple-converted-space"> </span></p> <p>The next step is the comparison of the molecules radial distribution and abundance in disks with the chemical composition of comets, which are the leftover building blocks of giant planet cores and other planetary bodies. The first pioneering results in this direction have been obtained thanks to the ESA’s <em>Rosetta </em>mission, which allowed obtaining in situ measurements of the COMs abundance on the comet 67P/Churyumov-Gerasimenko. The comparison with three protostellar solar analogs observed on Solar System scales has shown comparable COMs abundance, implying that the volatile composition of comets and planetesimals may be partially inherited from the protostellar stage. The advent of new mission, devoted to sample return such as AMBITION will allow us to do a step ahead in this direction.</p> <p> </p>


2017 ◽  
Vol 201 ◽  
pp. 331-344 ◽  
Author(s):  
Gregory A. Brennecka ◽  
Lars E. Borg ◽  
Stephen J. Romaniello ◽  
Amanda K. Souders ◽  
Quinn R. Shollenberger ◽  
...  

2015 ◽  
Vol 1 (4) ◽  
pp. e1500075 ◽  
Author(s):  
Tomoaki Kubo ◽  
Takumi Kato ◽  
Yuji Higo ◽  
Ken-ichi Funakoshi

The presence of seifertite, one of the high-pressure polymorphs of silica, in achondritic shocked meteorites has been problematic because this phase is thermodynamically stable at more than ~100 GPa, unrealistically high-pressure conditions for the shock events in the early solar system. We conducted in situ x-ray diffraction measurements at high pressure and temperatures, and found that it metastably appears down to ~11 GPa owing to the clear difference in kinetics between the metastable seifertite and stable stishovite formations. The temperature-insensitive but time-sensitive kinetics for the formation of seifertite uniquely constrains that the critical shock duration and size of the impactor on differentiated parental bodies are at least ~0.01 s and ~50 to 100 m, respectively, from the presence of seifertite.


2011 ◽  
Vol 71-78 ◽  
pp. 1237-1241
Author(s):  
Ming Shan Yang ◽  
Lin Kai Li

The organic-inorganic complex nano-particles with core-shell structure were synthesized by in situ emulsion polymerization based on fresh slush pulp of calcium carbonate (CaCO3) nanoparticles and acrylate polymer in this paper. The dispersion and encapsulation of nanoparticles were investigated by transmission electron microscopy (TEM). Unplasticized poly(vinyl chloride)(UPVC) was modified by organic-inorganic complex nanoparticles and the effects of toughening and reinforcing were systematically studied. The results showed that the effects of the reinforcement and toughening of organic-inorganic complex nanoparticles on UPVC were very significant. Especially, scanning electron microscopy(SEM) analysis results indicated that large-fiber drawing and network morphologies coexisted in the system of UPVC by joint modification of nanoparticles with CPE.


2019 ◽  
Vol 5 (9) ◽  
pp. eaaw3350 ◽  
Author(s):  
M.-C. Liu ◽  
J. Han ◽  
A. J. Brearley ◽  
A. T. Hertwig

Dust condensation and coagulation in the early solar system are the first steps toward forming the terrestrial planets, but the time scales of these processes remain poorly constrained. Through isotopic analysis of small Ca-Al–rich inclusions (CAIs) (30 to 100 μm in size) found in one of the most pristine chondrites, Allan Hills A77307 (CO3.0), for the short-lived 26Al-26Mg [t1/2 = 0.72 million years (Ma)] system, we have identified two main populations of samples characterized by well-defined 26Al/27Al = 5.40 (±0.13) × 10−5 and 4.89 (±0.10) × 10−5. The result of the first population suggests a 50,000-year time scale between the condensation of micrometer-sized dust and formation of inclusions tens of micrometers in size. The 100,000-year time gap calculated from the above two 26Al/27Al ratios could also represent the duration for the Sun being a class I source.


Sign in / Sign up

Export Citation Format

Share Document