Dynamics and thermodynamics of the Indian Ocean warm pool in a high-resolution global general circulation model

2005 ◽  
Vol 52 (14-15) ◽  
pp. 2031-2047 ◽  
Author(s):  
S. Prasanna Kumar ◽  
Akio Ishida ◽  
Kunio Yoneyama ◽  
M.R. Ramesh Kumar ◽  
Yuji Kashino ◽  
...  
2009 ◽  
Vol 22 (18) ◽  
pp. 4930-4938 ◽  
Author(s):  
Dietmar Dommenget ◽  
Malte Jansen

Abstract Several recent general circulation model studies discuss the predictability of the Indian Ocean dipole (IOD) mode, suggesting that it is predictable because of coupled ocean–atmosphere interactions in the Indian Ocean. However, it is not clear from these studies how much of the predictability is due to the response to El Niño. It is shown in this note that a simple statistical model that treats the Indian Ocean as a red noise process forced by tropical Pacific SST shows forecast skills comparable to those of recent general circulation model studies. The results also indicate that some of the eastern tropical Indian Ocean SST predictability in recent studies may indeed be beyond the skill of the simple model proposed in this note, indicating that dynamics in the Indian Ocean may have caused this improved predictability in this region. The model further indicates that the IOD index may be the least predictable index of Indian Ocean SST variability. The model is proposed as a null hypothesis for Indian Ocean SST predictions.


2005 ◽  
Vol 18 (24) ◽  
pp. 5382-5389 ◽  
Author(s):  
Jürgen Bader ◽  
Mojib Latif

Abstract The dominant pattern of atmospheric variability in the North Atlantic sector is the North Atlantic Oscillation (NAO). Since the 1970s the NAO has been well characterized by a trend toward its positive phase. Recent atmospheric general circulation model studies have linked this trend to a progressive warming of the Indian Ocean. Unfortunately, a clear mechanism responsible for the change of the NAO could not be given. This study provides further details of the NAO response to Indian Ocean sea surface temperature (SST) anomalies. This is done by conducting experiments with a coupled ocean–atmosphere general circulation model (OAGCM). The authors develop a hypothesis of how the Indian Ocean impacts the NAO.


1992 ◽  
Vol 7 (1) ◽  
pp. 119-135 ◽  
Author(s):  
G. R. Bigg ◽  
D. Jiang ◽  
J. F. B. Mitchell

2008 ◽  
Vol 21 (14) ◽  
pp. 3545-3560 ◽  
Author(s):  
Masahiro Watanabe

Abstract In this second of a two-part study, the two regimes in a simple tropical climate model identified in Part I are verified using a hybrid coupled general circulation model (HCM) that can reproduce the observed climatology and the interannual variability reasonably well. Defining a ratio of basin width between the Pacific and Indian Oceans, a series of parameter sweep experiments was conducted with idealized tropical land geometry. Consistent with the simple model, the HCM simulates two distinct states: the split warm pool regime with large vacillation between the two ocean basins and the single warm pool regime representing current climate. The former is suddenly switched to the latter as the Pacific becomes wider than the Indian Ocean. Furthermore, the vacillation in the split regime reveals a preferred transition route that the warm phase in the Pacific follows that in the Indian Ocean. This route occurs due to convectively coupled Kelvin waves that accompany precipitation anomalies over land. Additional experiments show that the inclusion of the idealized Eurasian continent stabilizes the split regime by reducing the Bjerknes feedback in the Indian Ocean, suggesting the atmosphere–ocean–land interaction at work in maintaining the observed warm pool. No difference in cloud feedback was found between two regimes; this feature may, however, be model dependent. Both the simple model and the HCM results suggest that the tropical atmosphere–ocean system inherently involves multiple solutions, which may have an implication on climate modeling as well as on the understanding of the observed mean climate.


Sign in / Sign up

Export Citation Format

Share Document