coupled general circulation model
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 9)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
pp. 1-52
Author(s):  
Ayumu Miyamoto ◽  
Hisashi Nakamura ◽  
Takafumi Miyasaka ◽  
Yu Kosaka

AbstractOver the South Indian Ocean, the coupled system of the subtropical Mascarene high and lowlevel clouds exhibits marked seasonality. To investigate this seasonality, the present study assesses radiative impacts of low-level clouds on the summertime Mascarene high with a coupled general circulation model. Comparison between a fully coupled control simulation and a “no low-cloud simulation,” where the radiative effects of low-level clouds are artificially turned off, demonstrates that they act to reinforce the Mascarene high. Their impacts are so significant that the summertime Mascarene high almost disappears in the no low-cloud experiment, suggesting their essential role in the existence of the summertime Mascarene high. As the primary mechanism, lowered seasurface temperature by the cloud albedo effect suppresses deep convective precipitation, inducing a Matsuno-Gill type response that reinforces the high, as verified through an atmospheric dynamical model diagnosis. Associated reduction of high-top clouds, as well as increased low-level clouds, augments in-atmosphere radiative cooling, which further reinforces the high. The present study reveals that low-level clouds constitute a tight positive feedback system with the subtropical high via sea-surface temperature over the summertime South Indian Ocean.


2020 ◽  
Vol 33 (23) ◽  
pp. 10187-10204
Author(s):  
Haruki Hirasawa ◽  
Paul J. Kushner ◽  
Michael Sigmond ◽  
John Fyfe ◽  
Clara Deser

AbstractSahel precipitation has undergone substantial multidecadal time scale changes during the twentieth century that have had severe impacts on the region’s population. Using initial-condition large ensembles (LE) of coupled general circulation model (GCM) simulations from two institutions, forced multidecadal variability is found in which Sahel precipitation declines from the 1950s to 1970s and then recovers from the 1970s to 2000s. This forced variability has similar timing to, but considerably smaller magnitude than, observed Sahel precipitation variability. Isolating the response using single forcing simulations within the LEs reveals that anthropogenic aerosols (AA) are the primary driver of this forced variability. The roles of the direct-atmospheric and the ocean-mediated atmospheric responses to AA forcing are determined with the atmosphere–land GCM (AGCM) components of the LE coupled GCMs. The direct-atmospheric response arises from changes to aerosol and precursor emissions with unchanged oceanic boundary conditions while the ocean-mediated response arises from changes to AA-forced sea surface temperatures and sea ice concentrations diagnosed from the AA-forced LE. In the AGCMs studied here, the direct-atmospheric response dominates the AA-forced 1970s − 1950s Sahel drying. On the other hand, the 2000s − 1970s wetting is mainly driven by the ocean-mediated effect, with some direct atmospheric contribution. Although the responses show differences, there is qualitative agreement between the AGCMs regarding the roles of the direct-atmospheric and ocean-mediated responses. Since these effects often compete and show nonlinearity, the model dependence of these effects and their role in the net aerosol-forced response of Sahel precipitation need to be carefully accounted for in future model analysis.


2020 ◽  
Vol 16 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Ning Tan ◽  
Camille Contoux ◽  
Gilles Ramstein ◽  
Yong Sun ◽  
Christophe Dumas ◽  
...  

Abstract. The mid-Piacenzian warm period (3.264 to 3.025 Ma) is the most recent geological period with present-like atmospheric pCO2 and is thus expected to have exhibited a warm climate similar to or warmer than the present day. On the basis of understanding that has been gathered on the climate variability of this interval, a specific interglacial (Marine Isotope Stage KM5c, MIS KM5c; 3.205 Ma) has been selected for the Pliocene Model Intercomparison Project phase 2 (PlioMIP 2). We carried out a series of experiments according to the design of PlioMIP2 with two versions of the Institut Pierre Simon Laplace (IPSL) atmosphere–ocean coupled general circulation model (AOGCM): IPSL-CM5A and IPSL-CM5A2. Compared to the PlioMIP 1 experiment, run with IPSL-CM5A, our results show that the simulated MIS KM5c climate presents enhanced warming in mid- to high latitudes, especially over oceanic regions. This warming can be largely attributed to the enhanced Atlantic Meridional Overturning Circulation caused by the high-latitude seaway changes. The sensitivity experiments, conducted with IPSL-CM5A2, show that besides the increased pCO2, both modified orography and reduced ice sheets contribute substantially to mid- to high latitude warming in MIS KM5c. When considering the pCO2 uncertainties (+/-50 ppmv) during the Pliocene, the response of the modeled mean annual surface air temperature to changes to pCO2 (+/-50 ppmv) is not symmetric, which is likely due to the nonlinear response of the cryosphere (snow cover and sea ice extent). By analyzing the Greenland Ice Sheet surface mass balance, we also demonstrate its vulnerability under both MIS KM5c and modern warm climate.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Edward Armstrong ◽  
Peter O. Hopcroft ◽  
Paul J. Valdes

Abstract We present a continuous land-based climate reconstruction dataset extending back 60 kyr from 0 BP (1950) at 0.5° resolution on a monthly timestep for 0°N to 90°N. It has been generated from 42 discrete snapshot simulations using the HadCM3B-M2.1 coupled general circulation model. We incorporate Dansgaard-Oeschger (DO) and Heinrich events to represent millennial scale variability, based on a temperature reconstruction from Greenland ice-cores, with a spatial fingerprint based on a freshwater hosing simulation with HadCM3B-M2.1. Interannual variability is also added and derived from the initial snapshot simulations. Model output has been downscaled to 0.5° resolution (using simple bilinear interpolation) and bias corrected. Here we present surface air temperature, precipitation, incoming shortwave energy, minimum monthly temperature, snow depth, wind chill and number of rainy days per month. This is one of the first open access climate datasets of this kind and can be used to study the impact of millennial to orbital-scale climate change on terrestrial greenhouse gas cycling, northern extra-tropical vegetation, and megaflora and megafauna population dynamics.


Sign in / Sign up

Export Citation Format

Share Document