scholarly journals The Indian Ocean SST dipole simulated in a coupled general circulation model

2000 ◽  
Vol 27 (20) ◽  
pp. 3369-3372 ◽  
Author(s):  
Satoshi Iizuka ◽  
Tomonori Matsuura ◽  
Toshio Yamagata
2009 ◽  
Vol 22 (18) ◽  
pp. 4930-4938 ◽  
Author(s):  
Dietmar Dommenget ◽  
Malte Jansen

Abstract Several recent general circulation model studies discuss the predictability of the Indian Ocean dipole (IOD) mode, suggesting that it is predictable because of coupled ocean–atmosphere interactions in the Indian Ocean. However, it is not clear from these studies how much of the predictability is due to the response to El Niño. It is shown in this note that a simple statistical model that treats the Indian Ocean as a red noise process forced by tropical Pacific SST shows forecast skills comparable to those of recent general circulation model studies. The results also indicate that some of the eastern tropical Indian Ocean SST predictability in recent studies may indeed be beyond the skill of the simple model proposed in this note, indicating that dynamics in the Indian Ocean may have caused this improved predictability in this region. The model further indicates that the IOD index may be the least predictable index of Indian Ocean SST variability. The model is proposed as a null hypothesis for Indian Ocean SST predictions.


2005 ◽  
Vol 18 (24) ◽  
pp. 5382-5389 ◽  
Author(s):  
Jürgen Bader ◽  
Mojib Latif

Abstract The dominant pattern of atmospheric variability in the North Atlantic sector is the North Atlantic Oscillation (NAO). Since the 1970s the NAO has been well characterized by a trend toward its positive phase. Recent atmospheric general circulation model studies have linked this trend to a progressive warming of the Indian Ocean. Unfortunately, a clear mechanism responsible for the change of the NAO could not be given. This study provides further details of the NAO response to Indian Ocean sea surface temperature (SST) anomalies. This is done by conducting experiments with a coupled ocean–atmosphere general circulation model (OAGCM). The authors develop a hypothesis of how the Indian Ocean impacts the NAO.


2007 ◽  
Vol 20 (13) ◽  
pp. 3018-3035 ◽  
Author(s):  
Suryachandra A. Rao ◽  
Sebastien Masson ◽  
Jing-Jia Luo ◽  
Swadhin K. Behera ◽  
Toshio Yamagata

Abstract Using 200 yr of coupled general circulation model (CGCM) results, causes for the termination of Indian Ocean dipole (IOD) events are investigated. The CGCM used here is the Scale Interaction Experiment-Frontier Research Center for Global Change (SINTEX-F1) model, which consists of a version of the European Community–Hamburg (ECHAM4.6) atmospheric model and a version of the Ocean Parallelise (OPA8.2) ocean general circulation model. This model reproduces reasonably well the present-day climatology and interannual signals of the Indian and Pacific Oceans. The main characteristics of the intraseasonal disturbances (ISDs)/oscillations are also fairly well captured by this model. However, the eastward propagation of ISDs in the model is relatively fast in the Indian Ocean and stationary in the Pacific compared to observations. A sudden reversal of equatorial zonal winds is observed, as a result of significant intraseasonal disturbances in the equatorial Indian Ocean in November–December of IOD events, which evolve independently of ENSO. A majority of these IOD events (15 out of 18) are terminated mainly because of the 20–40-day ISD activity in the equatorial zonal winds. Ocean heat budget analysis in the upper 50 m clearly shows that the initial warming after the peak of the IOD phenomenon is triggered by increased solar radiation owing to clear-sky conditions in the eastern Indian Ocean. Subsequently, the equatorial jets excited by the ISD deepen the thermocline in the southeastern equatorial Indian Ocean. This deepening of the thermocline inhibits the vertical entrainment of cool waters and therefore the IOD is terminated. IOD events that co-occur with ENSO are terminated owing to anomalous incoming solar radiation as a result of prevailing cloud-free skies. Further warming occurs seasonally through the vertical convergence of heat due to a monsoonal wind reversal along Sumatra–Java. On occasion, strong ISD activities in July–August terminated short-lived IOD events by triggering downwelling intraseasonal equatorial Kelvin waves.


1992 ◽  
Vol 7 (1) ◽  
pp. 119-135 ◽  
Author(s):  
G. R. Bigg ◽  
D. Jiang ◽  
J. F. B. Mitchell

Sign in / Sign up

Export Citation Format

Share Document