Natural dye bolaform sugar-based surfactant: Self aggregation and mixed micellization with ionic surfactants

2016 ◽  
Vol 131 ◽  
pp. 168-176 ◽  
Author(s):  
Zaheer Khan ◽  
Maqsood Ahmad Malik ◽  
Shaeel Ahmed Al-Thabaiti ◽  
Ommer Bashir ◽  
Tabrez Alam Khan
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Shalini Chandravanshi ◽  
Santosh K. Upadhyay

Allium cepais a natural dye that has been extracted from onion skin with the help of soxhlet apparatus. The pigment in the dye pelargonidin was found to be 2.25%. The interaction of the dye with ionic surfactants, namely, cationic surfactant (cetyltrimethylammonium bromide) and anionic (sodium lauryl sulphate) has been studied by spectrophotometrically, conductivity, and surface tension measurements. The thermodynamic and surface parameters have been evaluated for the interaction process. The results indicate{surfactant-dye}complex formation and domination of adsorption in comparison to micellization.


2021 ◽  
Vol 335 ◽  
pp. 116205
Author(s):  
Irene Russo Krauss ◽  
Domenico Cavasso ◽  
Donato Ciccarelli ◽  
Richard K. Heenan ◽  
Ornella Ortona ◽  
...  

1981 ◽  
Vol 31 (1) ◽  
pp. 395-400 ◽  
Author(s):  
Francis Perineau ◽  
Antoine Gaset
Keyword(s):  

Author(s):  
Hitoshi Tamiaki ◽  
Hiroyuki Kitamoto ◽  
Takuya Watanabe ◽  
Reiko Shibata
Keyword(s):  

Author(s):  
Elnaz Asgharkhani ◽  
Aazam Najmafshar ◽  
Mohsen Chiani

This study aims to investigate the effects of different non-ionic surfactants on physicochemical properties of ART niosomes. ART is a natural compound that is used as an antimalarial and chemotherapy agent in medicine. ART has low bioavailability, stability and solubility. In order to solve these problems and enhancing the efficiency of the drug, nanotechnology was used. In the present study, several niosomal formulations of ART prepared using different molar ratios of Span 60 : Tween 60 : PEG-600: ART in PBS. These three formulations were FI (1:1:0.5:0.5), FII (2:1:0.5:0.5) and FIII (1:2:0.5:0.5), respectively. The encapsulation efficiency was measured by HPLC and the drug release was evaluated by dialysis method. The cytotoxicity test was determined by MTT assay. The size, zeta potential and polydispersity index of the vesicles was measured by Zeta Sizer. Stability study was performed within two months. The MTT assay results showed that cytotoxicity effect of these formulations on MCF-7 cell line is better than C6 cell line and the FIII had the best results for both of them. The entrapment efficiencies of the formulations I, II and III were obtained 82.2±1.88%, 75.5±0.92% and 95.5±1.23%, respectively. The results of size, zeta potential and polydispersity index indicated that the size of the vesicles is below 200 nm, their surface charge is about -35 mV and they were monodisperse. Stability and release study indicated that the formulation III has the best stability and release pattern. Therefore, the use of PEGylated niosomal ART can effectively improve its therapeutic index, stability and solubility.


2018 ◽  
Vol 16 (1) ◽  
pp. 64-73 ◽  
Author(s):  
David O. Nyakundi ◽  
Stephen J. Bentley ◽  
Aileen Boshoff

Hsp70 members occupy a central role in proteostasis and are found in different eukaryotic cellular compartments. The mitochondrial Hsp70/J-protein machinery performs multiple functions vital for the proper functioning of the mitochondria, including forming part of the import motor that transports proteins from the cytosol into the matrix and inner membrane, and subsequently folds these proteins in the mitochondria. However, unlike other Hsp70s, mitochondrial Hsp70 (mtHsp70) has the propensity to self-aggregate, accumulating as insoluble aggregates. The self-aggregation of mtHsp70 is caused by both interdomain and intramolecular communication within the ATPase and linker domains. Since mtHsp70 is unable to fold itself into an active conformation, it requires an Hsp70 escort protein (Hep) to both inhibit self-aggregation and promote the correct folding. Hep1 orthologues are present in the mitochondria of many eukaryotic cells but are absent in prokaryotes. Hep1 proteins are relatively small and contain a highly conserved zinc-finger domain with one tetracysteine motif that is essential for binding zinc ions and maintaining the function and solubility of the protein. The zinc-finger domain lies towards the C-terminus of Hep1 proteins, with very little conservation outside of this domain. Other than maintaining mtHsp70 in a functional state, Hep1 proteins play a variety of other roles in the cell and have been proposed to function as both chaperones and co-chaperones. The cellular localisation and some of the functions are often speculative and are not common to all Hep1 proteins analysed to date.


Sign in / Sign up

Export Citation Format

Share Document