cellular localisation
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 34)

H-INDEX

32
(FIVE YEARS 3)

Author(s):  
Sarah Whiteley ◽  
Robert D McCuaig ◽  
Clare E Holleley ◽  
Sudha Rao ◽  
Arthur Georges

Abstract The mechanisms by which sex is determined, and how a sexual phenotype is stably maintained during adulthood, has been the focus of vigorous scientific inquiry. Resources common to the biomedical field (automated staining and imaging platforms) were leveraged to provide the first immunofluorescent data for a reptile species with temperature induced sex reversal. Two four-plex immunofluorescent panels were explored across three sex classes (sex reversed ZZf females, normal ZWf females, and normal ZZm males). One panel was stained for chromatin remodelling genes JARID2 and KDM6B, and methylation marks H3K27me3, and H3K4me3 (Jumonji Panel). The other CaRe panel stained for environmental response genes CIRBP and RelA, and H3K27me3 and H3K4me3. Our study characterised tissue specific expression and cellular localisation patterns of these proteins and histone marks, providing new insights to the molecular characteristics of adult gonads in a dragon lizard Pogona vitticeps. The confirmation that mammalian antibodies cross react in P. vitticeps paves the way for experiments that can take advantage of this new immunohistochemical resource to gain a new understanding of the role of these proteins during embryonic development, and most importantly for P. vitticeps, the molecular underpinnings of sex reversal.


Author(s):  
Abi S Ghifari ◽  
Pedro F Teixeira ◽  
Beata Kmiec ◽  
Neha Singh ◽  
Elzbieta Glaser ◽  
...  

Abstract Plant endosymbiotic organelles such as mitochondria and chloroplasts harbour a wide array of biochemical reactions. As a part of protein homeostasis to maintain organellar activity and stability, unwanted proteins and peptides need to be completely degraded in a stepwise mechanism termed the processing pathway, where at the last stage single amino acids are released by aminopeptidases. Here, we determined the molecular and physiological functions of a prolyl aminopeptidase homologue PAP1 (At2g14260) that is able to release N-terminal proline. Transcript analyses demonstrate that an alternative transcription start site (TSS) gives rise to two alternate transcripts, generating two in-frame proteins PAP1.1 and PAP1.2. Sub-cellular localisation studies revealed that the longer isoform PAP1.1, which contains a 51-residue N-terminal extension is exclusively targeted to chloroplasts, while the truncated isoform PAP1.2 is located in the cytosol. Distinct expression patterns in different tissues and developmental stages were observed. Investigations into the physiological role of PAP1 using loss-of-function mutants revealed that PAP1 activity may be involved in proline homeostasis and accumulation, required for pollen development and tolerance to osmotic stress. Enzymatic activity, sub-cellular location, and expression patterns of PAP1 suggest a role in the chloroplastic peptide processing pathway and proline homeostasis.


Diabetologia ◽  
2021 ◽  
Author(s):  
Helmut Hiller ◽  
Changjun Yang ◽  
Dawn E. Beachy ◽  
Irina Kusmartseva ◽  
Eduardo Candelario-Jalil ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6409
Author(s):  
Marco Anteghini ◽  
Vitor Martins dos Santos ◽  
Edoardo Saccenti

Peroxisomes are ubiquitous membrane-bound organelles, and aberrant localisation of peroxisomal proteins contributes to the pathogenesis of several disorders. Many computational methods focus on assigning protein sequences to subcellular compartments, but there are no specific tools tailored for the sub-localisation (matrix vs. membrane) of peroxisome proteins. We present here In-Pero, a new method for predicting protein sub-peroxisomal cellular localisation. In-Pero combines standard machine learning approaches with recently proposed multi-dimensional deep-learning representations of the protein amino-acid sequence. It showed a classification accuracy above 0.9 in predicting peroxisomal matrix and membrane proteins. The method is trained and tested using a double cross-validation approach on a curated data set comprising 160 peroxisomal proteins with experimental evidence for sub-peroxisomal localisation. We further show that the proposed approach can be easily adapted (In-Mito) to the prediction of mitochondrial protein localisation obtaining performances for certain classes of proteins (matrix and inner-membrane) superior to existing tools.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ana B. Garcia-Delgado ◽  
Lourdes Valdes-Sanchez ◽  
Maria Jose Morillo-Sanchez ◽  
Beatriz Ponte-Zuñiga ◽  
Francisco J. Diaz-Corrales ◽  
...  

AbstractMutations in the EYS gene are one of the major causes of autosomal recessive retinitis pigmentosa. EYS-retinopathy presents a severe clinical phenotype, and patients currently have no therapeutic options. The progress in personalised medicine and gene and cell therapies hold promise for treating this degenerative disease. However, lack of understanding and incomplete comprehension of disease's mechanism and the role of EYS in the healthy retina are critical limitations for the translation of current technical advances into real therapeutic possibilities. This review recapitulates the present knowledge about EYS-retinopathies, their clinical presentations and proposed genotype–phenotype correlations. Molecular details of the gene and the protein, mainly based on animal model data, are analysed. The proposed cellular localisation and roles of this large multi-domain protein are detailed. Future therapeutic approaches for EYS-retinopathies are discussed.


2021 ◽  
Author(s):  
Weigang Cai ◽  
Michaela Egertová ◽  
Cleidiane G. Zampronio ◽  
Alexandra M. Jones ◽  
Maurice R. Elphick

2021 ◽  
Author(s):  
P. J. Y. Toh ◽  
J. K. H. Lai ◽  
A. Hermann ◽  
O. Destaing ◽  
M. P. Sheetz ◽  
...  

AbstractYAP, an effector of the Hippo signalling pathway, promotes organ growth and regeneration. Prolonged YAP activation results in uncontrolled proliferation and cancer. Therefore, exogenous regulation of YAP activity has potential translational applications. We present a versatile optogenetic construct (optoYAP) for manipulating YAP localisation, and consequently its activity and function. We attached a LOV2 domain that photocages a nuclear localisation signal (NLS) to the N-terminus of YAP. In 488 nm light, the LOV2 domain unfolds, exposing the NLS, which shuttles optoYAP into the nucleus. Nuclear import of optoYAP is reversible and tuneable by light intensity. In cell culture, activated optoYAP promotes YAP target gene expression, cell proliferation, and anchorage-independent growth. Similarly, we can utilise optoYAP in zebrafish embryos to modulate target genes. OptoYAP is functional in both cell culture and in vivo, providing a powerful tool to address basic research questions and therapeutic applications in regeneration and disease.


2021 ◽  
Author(s):  
Olivier Castellanet ◽  
Fahmida Ahmad ◽  
Yaron Vinik ◽  
Gordon B Mills ◽  
Bianca H Habermann ◽  
...  

Cell cycle regulators are frequently altered in Triple-Negative Breast Cancer (TNBC). Emerging agents targeting these signals offer the possibility to design new combinatorial therapies. However, preclinical models that recapitulate TNBC primary resistance and heterogeneity are essential to evaluate the potency of these combined treatments. Methods: Bioinformatic processing of human breast cancer datasets was used to analyse correlations between expression levels of cell cycle regulators and patient survival outcome. The MMTV-R26Met mouse model of TNBC resistance and heterogeneity was employed to analyse expression and targeting vulnerability of cell cycle regulators in the presence of BCL-XL blockage. Robustness of outcomes and selectivity was further explored using a panel of human breast cancer cells. Alterations of protein expression, phosphorylation, and/or cellular localisation were analysed by western blots, reverse phase protein array, and immunocytochemistry. Bioinformatics was performed to highlight drug's mechanisms of action. Results: We report that high expression levels of BCL-XL and specific cell cycle regulators correlate with poor survival outcomes of TNBC patients. Blockage of BCL-XL confers vulnerability to drugs targeting CDK1/2/4, but not FOXM1, CDK4/6, Aurora A and Aurora B, to all MMTV-R26Met and human TNBC cell lines tested. Mechanistically, we show that, co-targeting of BCL-XL and CDK1/2/4 synergistically inhibited cell growth by combinatorial depletion of survival and RTK/AKT signals, and concomitantly restoring FOXO3a tumour suppression actions. This was accompanied by an accumulation of DNA damage and consequently apoptosis. Conclusions: Our studies illustrate the possibility to exploit the vulnerability of TNBC cells to CDK1/2/4 inhibition by targeting BCL-XL. Moreover, they underline that specificity matters in targeting cell cycle regulators for combinatorial anticancer therapies.


2021 ◽  
Author(s):  
Gemma L. M. Fisher ◽  
Jani R. Bolla ◽  
Karthik V. Rajasekar ◽  
Jarno Mäkelä ◽  
Rachel Baker ◽  
...  

ABSTRACTSMC complexes have ubiquitous roles in chromosome organisation. In Escherichia coli, the interplay between the SMC complex, MukBEF, and matS-bound MatP in the replication termination region, ter, results in depletion of MukBEF from ter, thus promoting chromosome individualisation by directing replichores to separate cell halves. MukBEF also interacts with topoisomerase IV ParC2E2 heterotetramers, to direct its chromosomal distribution to mirror that of MukBEF, thereby facilitating coordination between chromosome organisation and decatenation by topoisomerase IV. Here we demonstrate that the MukB dimerization hinge binds ParC and MatP with the same dimer to dimer stoichiometry. MatP and ParC have an overlapping binding interface on the MukB hinge, leading to their mutually exclusive binding. Furthermore, the MukB hinge fails to stably associate with matS-bound MatP, while MatP mutants deficient in matS binding are impaired in MukB hinge binding, demonstrating that mats competes with the hinge for MatP binding. Cells expressing MukBEF complexes containing a mutation in the MukB hinge interface for ParC/MatP binding are deficient in ParC binding in vivo, despite having a Muk+ topoisomerase IV+ phenotype. This mutant protein is also impaired in MatP binding in vitro, and cells expressing this variant exhibit a MukBEF cellular localisation consistent with impaired MatP binding.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 611
Author(s):  
Kelly Coffey

Identifying novel therapeutic targets for the treatment of prostate cancer (PC) remains a key area of research. With the emergence of resistance to androgen receptor (AR)-targeting therapies, other signalling pathways which crosstalk with AR signalling are important. Over recent years, evidence has accumulated for targeting the Hippo signalling pathway. Discovered in Drosophila melanogasta, the Hippo pathway plays a role in the regulation of organ size, proliferation, migration and invasion. In response to a variety of stimuli, including cell–cell contact, nutrients and stress, a kinase cascade is activated, which includes STK4/3 and LATS1/2 to inhibit the effector proteins YAP and its paralogue TAZ. Transcription by their partner transcription factors is inhibited by modulation of YAP/TAZ cellular localisation and protein turnover. Trnascriptional enhanced associate domain (TEAD) transcription factors are their classical transcriptional partner but other transcription factors, including the AR, have been shown to be modulated by YAP/TAZ. In PC, this pathway can be dysregulated by a number of mechanisms, making it attractive for therapeutic intervention. This review looks at each component of the pathway with a focus on findings from the last year and discusses what knowledge can be applied to the field of PC.


Sign in / Sign up

Export Citation Format

Share Document