lauryl ether
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 45)

H-INDEX

20
(FIVE YEARS 4)

Author(s):  
Felipe Müzel ◽  
Eduardo Rossini ◽  
Helena Pezza

A green methodology was developed for the extraction and determination of lauryl ether sulfate in raw materials and commercial liquid soap and shower gel samples. The method avoids the use of organic solvents, offering a simple, cheap, and safe analysis. The methodology is based on the sorption of an ionic pair consisting of a cationic dye and an anionic surfactant onto polyurethane foam. The experimental variables were optimized by chemometry to obtain the conditions that maximized extraction of the ionic pair. Digital imaging and spectrophotometry were used for quantification in the linear concentration range from 10.0 to 100 mg L-1. The limits of detection and quantification were, respectively, 2.71 and 9.28 mg L-1 for digital imaging, and 1.74 and 5.83 mg L-1 for spectrophotometry. The methods showed good results when applied to commercial samples, with recoveries in the range 96.8-103%.


2021 ◽  
Vol 11 (6) ◽  
pp. 68-74
Author(s):  
Vidi Posdo Simarmata

Disinfectants are chemical agents used in disinfection in liquid form or solution form and are well-known as microbicidal, fungicidal, and virucidal but still unknown as parasiticidal, especially the effect to A. lumbricoides. In Indonesia, the prevalence of ascariasis is about 30,4% and still high. Ascariasis is caused by A. lumbricoides helminth that human swallows in egg form. Ascaris lumbricoides egg's characteristics are hydrophobic and sticky, making it easy to stick on the floor, household, and skin. This research aims to find the difference between the combination of the effects of Alcohol Ethoxylate-Sodium Lauryl Ether Sulfate and the combination of Carbol-Pine Oil to A. lumbricoides eggshell and larva development as prevention and to break the life cycle chain of A. lumbricoides. The research results showed no effects from Alcohol Ethoxylate- Sodium Lauryl Ether Sulfate combination and Carbol-Pine Oil combination to A. lumbricoides eggshell and embryo development. Keywords: Disinfectants, ascariasis, concentration, eggshell, larva development.


2021 ◽  
Vol 342 ◽  
pp. 117519
Author(s):  
Kehui Hu ◽  
Huiwen Zhang ◽  
Mai Ouyang ◽  
Mengke Kong ◽  
Qianwen Jiang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ludovica Rolando ◽  
Anna Barra Caracciolo ◽  
Paola Grenni ◽  
Livia Mariani ◽  
Jasmin Rauseo ◽  
...  

The anionic surfactant sodium lauryl ether sulfate (SLES) is the main component of most commercial foaming agents (FAs) used in the excavation of highway and railway tunnels with Earth pressure balance-tunnel boring machines (EPB-TBMs). Several hundreds of millions of tons of spoil material, consisting of soil mixed with FAs, are produced worldwide, raising the issue of their handling and safe disposal. Reducing waste production and reusing by-products are the primary objectives of the “circular economy,” and in this context, the biodegradation of SLES becomes a key question in reclaiming excavated soils, especially at construction sites where SLES degradation on the spot is not possible because of lack of space for temporary spoil material storage. The aim of the present work was to apply a bacterial consortium (BC) of SLES degraders to spoil material excavated with an EPB-TBM and coming from a real construction site. For this purpose, the BC capability to accelerate SLES degradation was tested. Preliminary BC growth, degradation tests, and ecotoxicological evaluations were performed on a selected FA. Subsequently, a bioaugmentation experiment was conducted; and the microbial abundance, viability, and SLES concentrations in spoil material were evaluated over the experimental time (0.5, 3, 6, 24, 48, and 144 h). Moreover, the corresponding aqueous elutriates were extracted from all the soil samples and analyzed for SLES concentration and ecotoxicological evaluations with the bacterium Aliivibrio fischeri. The preliminary experiments showed the BC capability to grow under 14 different concentrations of the FA. The maximum BC growth rates and degradation efficiency (100%) were achieved with initial SLES concentrations of 125, 250, and 500 mg/L. The subsequent bioaugmentation of the spoil material with BC significantly (sixfold) improved the degradation time of SLES (DT50 1 day) compared with natural attenuation (DT50 6 days). In line with this result, neither SLES residues nor toxicity was recorded in the soil extracts showing the spoil material as a by-product promptly usable. The bioaugmentation with BC can be a very useful for cleaning spoil material produced in underground construction where its temporary storage (for SLES natural biodegradation) is not possible.


Sign in / Sign up

Export Citation Format

Share Document