scholarly journals Small-scale instabilities of an island wake flow in a rotating shallow-water layer

2010 ◽  
Vol 49 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Samuel Teinturier ◽  
Alexandre Stegner ◽  
Henri Didelle ◽  
Samuel Viboud
2010 ◽  
Vol 111 ◽  
pp. 1-24
Author(s):  
Samuel Teinturier ◽  
Alexandre Stegner ◽  
Henri Didelle ◽  
Samuel Viboud

2013 ◽  
Vol 724 ◽  
pp. 695-703 ◽  
Author(s):  
Hamid Ait Abderrahmane ◽  
Mohamed Fayed ◽  
Hoi Dick Ng ◽  
Georgios H. Vatistas

AbstractRelative equilibria of two and three satellite vortices in a rotating shallow water layer have been recorded via particle image velocimetry (PIV) and their autorotation speed was estimated. This study shows that these equilibria retain the fundamental characteristics of Kelvin’s equilibria, and could be adequately described by the classical idealized point vortex theory. The same conclusion can also be inferred using the experimental dataset of Bergmann et al. (J. Fluid Mech., vol. 679, 2011, pp. 415–431; J. Fluid Mech., vol. 691, 2012, pp. 605–606) if the assigned field’s contribution to pattern rotation is included.


1998 ◽  
Vol 356 ◽  
pp. 1-24 ◽  
Author(s):  
A. STEGNER ◽  
V. ZEITLIN

We perform a detailed experimental study of large-scale vortices propagating in the rotating shallow-water layer in a paraboloidal vessel. A specific data acquisition technique is used in order to ensure precise measurements of the free-surface elevation. We find two qualitatively different types of vortex behaviour controlled by the relative elevation value. For small elevations we observe a standard quasi-geostrophic pattern with an asymmetric secondary circulation around an initially symmetric vortex which leads to a meridional drift and Rossby wave radiation. This type of behaviour is exhibited by both cyclonic and anticyclonic vortices. For relative elevations larger than 1 (nonlinear regime) the necessarily anticyclonic vortices are drifting strictly zonally maintaining their circular symmetry during the viscous decay. By varying the initial latitude of the vortex we were able to check that in the nonlinear regime the vortex lifetime is not sensitive to the beta-effect, while it is the case in the quasi-geostrophic regime. In the same way we show that the observed difference in cyclone–anticyclone lifetimes is not influenced by the beta-effect.


2008 ◽  
Vol 8 (4) ◽  
pp. 313-331
Author(s):  
M. V. Kalashnik ◽  
S. J. Tsakadze ◽  
V. O. Kakhiani ◽  
K. I. Patarashvili ◽  
M. A. Zhvania ◽  
...  

1997 ◽  
Vol 338 ◽  
pp. 157-172 ◽  
Author(s):  
DAOYI CHEN ◽  
GERHARD H. JIRKA

In shallow turbulent wake flows (typically an island wake), the flow patterns have been found experimentally to depend mainly on a shallow wake parameter, S=cfD/h in which cf is a quadratic-law friction coefficient, D is the island diameter and h is water depth. In order to understand the dependence of flow patterns on S, the shallow-water stability equation (a modified Orr–Sommerfeld equation) has been derived from the depth-averaged equations of motion with terms which describe bottom friction. Absolute and convective instabilities have been investigated on the basis of wake velocity profiles with a velocity deficit parameter R. Numerical computations have been carried out for a range of R-values and a stability diagram with two dividing lines was obtained, one defining the boundary between absolute and convective instabilities Sca, and another defining the transition between convectively unstable and stable wake flow Scc. The experimental measurements (Chen & Jirka 1995) of return velocities in shallow wakes were used to compute R-values and two critical values, SA=0.79 and SC=0.85, were obtained at the intersections with lines Sca and Scc. Through comparison with transition values observed experimentally for wakes with unsteady bubble (recirculation zone) and vortex shedding, SU and SV respectively, the sequence SC>SA> SU>SV shows vortex shedding to be the end product of absolute instability. This is analogous to the sequence of critical Reynolds numbers for an unbounded wake of large spanwise extent. Experimental frequency characteristics compare well with theoretical results. The observed values of SU and SV for different flow patterns correspond to the velocity profile with R=−0.945, which is located at the end of the wake bubble, and it provides the dominant mode.


2016 ◽  
Vol 51 (5) ◽  
pp. 606-619 ◽  
Author(s):  
M. V. Kalashnik ◽  
O. G. Chkhetiani

2021 ◽  
Author(s):  
Rüdiger Brecht ◽  
Long Li ◽  
Werner Bauer ◽  
Etienne Mémin

<p>We introduce a new representation of the rotating shallow water equations based on a stochastic transport principle. The derivation relies on a decomposition of the fluid flow into a large-scale component and a noise term that models the unresolved small-scale flow. The total energy of such a random model is demonstrated to be preserved along time for any realization. Thus, we propose to combine a structure-preserving discretization of the underlying deterministic model with the discrete stochastic terms. This way, our method can directly be used in existing dynamical cores of global numerical weather prediction and climate models. For an inviscid test case on the f-plane we use a homogenous noise and illustrate that the spatial part of the stochastic scheme preserves the total energy of the system. Finally, using an inhomogenous noise, we show  that the proposed random model better captures the structure of a large-scale flow than a comparable deterministic model for a barotropically unstable jet on the sphere.</p>


2009 ◽  
Vol 137 (10) ◽  
pp. 3339-3350 ◽  
Author(s):  
Ramachandran D. Nair

Abstract A second-order diffusion scheme is developed for the discontinuous Galerkin (DG) global shallow-water model. The shallow-water equations are discretized on the cubed sphere tiled with quadrilateral elements relying on a nonorthogonal curvilinear coordinate system. In the viscous shallow-water model the diffusion terms (viscous fluxes) are approximated with two different approaches: 1) the element-wise localized discretization without considering the interelement contributions and 2) the discretization based on the local discontinuous Galerkin (LDG) method. In the LDG formulation the advection–diffusion equation is solved as a first-order system. All of the curvature terms resulting from the cubed-sphere geometry are incorporated into the first-order system. The effectiveness of each diffusion scheme is studied using the standard shallow-water test cases. The approach of element-wise localized discretization of the diffusion term is easy to implement but found to be less effective, and with relatively high diffusion coefficients, it can adversely affect the solution. The shallow-water tests show that the LDG scheme converges monotonically and that the rate of convergence is dependent on the coefficient of diffusion. Also the LDG scheme successfully eliminates small-scale noise, and the simulated results are smooth and comparable to the reference solution.


Sign in / Sign up

Export Citation Format

Share Document