beta effect
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 11)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Nazlı Melis Misyağcı ◽  
◽  
Çiğdem Müge Haylı ◽  
Lale Ayşegül Büyükgönenç ◽  
◽  
...  

2020 ◽  
Vol 77 (11) ◽  
pp. 3721-3732
Author(s):  
Hing Ong ◽  
Paul E. Roundy

AbstractThis study derives a complete set of equatorially confined wave solutions from an anelastic equation set with the complete Coriolis terms, which include both the vertical and meridional planetary vorticity. The propagation mechanism can change with the effective static stability. When the effective static stability reduces to neutral, buoyancy ceases, but the role of buoyancy as an eastward-propagation mechanism is replaced by the compressional beta effect (i.e., vertical density-weighted advection of the meridional planetary vorticity). For example, the Kelvin mode becomes a compressional Rossby mode. Compressional Rossby waves are meridional vorticity disturbances that propagate eastward owing to the compressional beta effect. The compressional Rossby wave solutions can serve as a benchmark to validate the implementation of the nontraditional Coriolis terms (NCTs) in numerical models; with an effectively neutral condition and initial large-scale disturbances given a half vertical wavelength spanning the troposphere on Earth, compressional Rossby waves are expected to propagate eastward at a phase speed of 0.24 m s−1. The phase speed increases with the planetary rotation rate and the vertical wavelength and also changes with the density scale height. Besides, the compressional beta effect and the meridional vorticity tendency are reconstructed using reanalysis data and regressed upon tropical precipitation filtered for the Madden–Julian oscillation (MJO). The results suggest that the compressional beta effect contributes 10.8% of the meridional vorticity tendency associated with the MJO in terms of the ratio of the minimum values.


Author(s):  
V. P. Reutov ◽  
G. V. Rybushkina

The onset of anomalous transport of a passive scalar at the excitation of unsteady chains of wave structures with closed streamlines in a barotropic jet flow modeling zonal flows in the Earths atmosphere and ocean and in laboratory experiments is investigated. The analysis is performed within a dynamical model describing saturation of the barotropic instability in a plane-parallel channel flow with allowance for the beta-effect and external friction. The equations of a quasi-two-dimensional flow are solved numerically with the aid of a pseudospectral method. It is found that the generation of high modes in a jet with a two-hump velocity profile leads to accelerated transition to the complex dynamics, at which an increase in supercriticality first gives rise to а multiharmonic regime with a discrete spectrum. The exponents of the power dependence on the time of the averaged (over the ensemble) tracer particle displacement and its variance are computed for the basic generation regimes, which confirms the occurrence of anomalous diffusion of the scalar. A self-similar probability density function of tracer displacements is obtained and the dependence of the transition to complex dynamics on the number of vortices in the chain and on the strength of the beta-effect is elucidated. Numerical estimates are presented, which confirm the possibility of generation of unsteady vortex chains and the related anomalous transport of the scalar.barotropic flow; chains of wave structures; dynamical chaos; anomalous advection and diffusion


2019 ◽  
Vol 33 (28) ◽  
pp. 1950342
Author(s):  
Ruigang Zhang ◽  
Quansheng Liu ◽  
Liangui Yang

In this work, the propagation of higher-dimensional nonlinear Rossby waves under the generalized beta effect is considered. Using the methods of weak nonlinear perturbation expansions and the multiple scales, we obtain a new (2 + 1)-dimensional generalized Boussinesq equation from the barotropic potential vorticity equation for the first time. Furthermore, a new dispersion relation for the linear Rossby waves is given corresponding to the linearized Boussinesq equation. More importantly, based on the methods of the traveling wave setting and the Jacobi elliptic function expansions, several kinds of exact traveling wave solutions for the higher-dimensional nonlinear Rossby waves, including the periodic solutions, solitary solutions and others are obtained. Finally, we simulate the solitary solutions obtained by using the method of the Jacobi elliptic function. The numerical results show that the amplitude of the Rossby solitary waves is decreasing with the increase of generalized beta effect.


2019 ◽  
Vol 49 (9) ◽  
pp. 2337-2343 ◽  
Author(s):  
Joseph Pedlosky

AbstractThe weakly unstable, two-layer model of baroclinic instability is studied in a configuration in which the flow is perturbed at the inflow section of a channel by a slow and periodic perturbation. In a parameter regime where the governing equation would be the Lorenz equations for chaos if the development occurs only in time, the solution behavior becomes considerably more complex as a function of time and downstream coordinate. In the absence of the beta effect it has earlier been shown that the chaotic behavior along characteristics renders the solution nearly discontinuous in the slow downstream coordinate of the asymptotic model. The additional presence of the beta effect, although expunging the chaos for large enough values of the beta parameter, also provides an additional mechanism for abrupt spatial change.


2019 ◽  
Vol 875 ◽  
pp. 225-253 ◽  
Author(s):  
Michael Rabinovich ◽  
Ziv Kizner ◽  
Glenn Flierl

We consider two-dimensional quasi-geostrophic annular flows around a circular island with a radial offshore bottom slope. Since the conical bottom topography causes a certain beta effect, by analogy with the conventional beta plane we term our model a beta cone. Our focus is on the flows with zero total circulation, which are composed of two concentric rings of uniform potential vorticity (PV) attached to the island. The linear stability of such flows on a beta cone was investigated in a previous publication of ours. In the present paper, we study numerically the nonlinear evolution of weakly viscous flows, whose parameters are fitted so as to guarantee the highest instability of the azimuthal mode $m=1,\ldots ,6$. We study the production of vortices and Rossby waves due to the instability, consider the effect of waves on the emerging vortices and the interaction between the vortices. As in the flat-bottom case, at $m\geqslant 2$, the instability at weak bottom slopes normally leads to the emission of $m$ dipoles. However, a fundamental difference between the flat-bottom and beta-cone cases is observed in the trajectories of the dipoles as the latter recede from the island. When the flow is initially counterclockwise, the conical beta effect may force the dipoles to make a complete turn, come back to the island and rearrange in new couples that again leave the island and return. This quasi-periodic process gradually fades due to filamentation, wave radiation and viscous dissipation. Another possible outcome is symmetrical settling of $m$ dipoles in a circular orbit around the island, in which they move counterclockwise. This behaviour is reminiscent of the adaptation of strongly tilted beta-plane modons (dipoles) to the eastward movement. If the initial flow is clockwise, the emerged dipoles usually disintegrate, but sometimes, the orbital arrangement is possible. At a moderate slope, the evolution of an unstable flow, which is initially clockwise, may end up in the formation of a counterclockwise flow. At steeper slopes, a clockwise flow may transform into a quasi-stationary vortex multipole. When the slope is sufficiently steep, the topographic Rossby waves developing outside of the PV rings can smooth away the instability crests and troughs at the outer edge of the main flow, thus preventing the vortex production but allowing the formation of a new quasi-stationary pattern, a doubly connected coherent PV structure possessing $m$-fold symmetry. Such an $m$-fold pattern can be steady only if it rotates counterclockwise, otherwise it radiates Rossby waves and transforms eventually into a circularly symmetric flow.


2019 ◽  
Vol 122 ◽  
pp. 270-280 ◽  
Author(s):  
Ruigang Zhang ◽  
Quansheng Liu ◽  
Liangui Yang ◽  
Jian Song
Keyword(s):  

2019 ◽  
Vol 76 (2) ◽  
pp. 639-668 ◽  
Author(s):  
Qiu Yang ◽  
Boualem Khouider ◽  
Andrew J. Majda ◽  
Michèle De La Chevrotière

AbstractA simple multilayer zonally symmetric model, using a multicloud convective parameterization and coupled to a dynamical bulk atmospheric boundary layer, is used here to simulate boreal summer intraseasonal oscillations (BSISO) in the summer monsoon trough and elucidate the underlying main physical mechanisms responsible for their initiation, propagation, and termination. Northward-moving precipitating events initiated near the equator propagate northward at roughly 1° day−1 and terminate near 20°N. Unlike earlier findings, the northward propagation of precipitation anomalies in this model is due to the propagation of positive moisture anomalies in the northward direction, resulting from an asymmetry in the meridional velocity induced by the beta effect. From a moisture-budget perspective, advection constitutes a biased intrusion of dry air into the convection center, forcing new convection events to form north of the wave disturbance, while moisture convergence supplies the precipitation sink. The BSISO events are initiated near the equator when the competing effects between first-baroclinic divergence and second-baroclinic convergence, induced by the descending branch of the Hadley cell and in situ congestus heating, respectively, become favorable to convective intensification. The termination often near 20°N and halfway stalling of these precipitating events occur when the asymmetry in the first-baroclinic meridional winds weakens and when the negative moisture gradient to the north of the convection center becomes too strong as the anomaly exits the imposed warm pool domain.


Sign in / Sign up

Export Citation Format

Share Document