The variation in microbial community structure under different heavy metal contamination levels in paddy soils

2019 ◽  
Vol 180 ◽  
pp. 557-564 ◽  
Author(s):  
Yaoben Lin ◽  
Yanmei Ye ◽  
Yiming Hu ◽  
Haokun Shi
2018 ◽  
Vol 126 ◽  
pp. 57-63 ◽  
Author(s):  
Rachelle E. Beattie ◽  
Wyatt Henke ◽  
Maria F. Campa ◽  
Terry C. Hazen ◽  
L. Rex McAliley ◽  
...  

2004 ◽  
Vol 70 (4) ◽  
pp. 2323-2331 ◽  
Author(s):  
Kevin P. Feris ◽  
Philip W. Ramsey ◽  
Chris Frazar ◽  
Matthias Rillig ◽  
Johnnie N. Moore ◽  
...  

ABSTRACT Heavy metals contaminate numerous freshwater streams and rivers worldwide. Previous work by this group demonstrated a relationship between the structure of hyporheic microbial communities and the fluvial deposition of heavy metals along a contamination gradient during the fall season. Seasonal variation has been documented in microbial communities in numerous terrestrial and aquatic environments, including the hyporheic zone. The current study was designed to assess whether relationships between hyporheic microbial community structure and heavy-metal contamination vary seasonally by monitoring community structure along a heavy-metal contamination gradient for more than a year. No relationship between total bacterial abundance and heavy metals was observed (R 2 = 0.02, P = 0.83). However, denaturing gradient gel electrophoresis pattern analysis indicated a strong and consistent linear relationship between the difference in microbial community composition (populations present) and the difference in the heavy metal content of hyporheic sediments throughout the year (R 2 = 0.58, P < 0.001). Correlations between heavy-metal contamination and the abundance of four specific phylogenetic groups (most closely related to the α, β, and γ-proteobacteria and cyanobacteria) were apparent only during the fall and early winter, when the majority of organic matter is deposited into regional streams. These seasonal data suggest that the abundance of susceptible populations responds to heavy metals primarily during seasons when the potential for growth is highest.


2003 ◽  
Vol 69 (9) ◽  
pp. 5563-5573 ◽  
Author(s):  
Kevin Feris ◽  
Philip Ramsey ◽  
Chris Frazar ◽  
Johnnie N. Moore ◽  
James E. Gannon ◽  
...  

ABSTRACT The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods (denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct microscopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic zone of six different river sites that encompass a wide range of sediment metal loads resulting from large base-metal mining activity in the region. There was no correlation between sediment metal content and the total hyporheic microbial biomass present within each site. However, microbial community structure showed a significant linear relationship with the sediment metal loads. The abundances of four phylogenetic groups (groups I, II, III, and IV) most closely related to α-, β-, and γ-proteobacteria and the cyanobacteria, respectively, were determined. The sediment metal content gradient was positively correlated with group III abundance and negatively correlated with group II abundance. No correlation was apparent with regard to group I or IV abundance. This is the first documentation of a relationship between fluvially deposited heavy-metal contamination and hyporheic microbial community structure. The information presented here may be useful in predicting long-term effects of heavy-metal contamination in streams and provides a basis for further studies of metal effects on hyporheic microbial communities.


2018 ◽  
Vol 20 (4) ◽  
pp. 673-685 ◽  
Author(s):  
Tatiana A. Vishnivetskaya ◽  
Haiyan Hu ◽  
Joy D. Van Nostrand ◽  
Ann M. Wymore ◽  
Xiaohang Xu ◽  
...  

Sulfate-reducing bacteria and methanogens are the primary Hg-methylators in Chinese rice paddies.


2019 ◽  
Vol 39 (1) ◽  
pp. 85-95 ◽  
Author(s):  
Bayou Adlane ◽  
Zhidong Xu ◽  
Xiaohang Xu ◽  
Longchao Liang ◽  
Jialiang Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document