scholarly journals Impact of simulated acid rain on the composition of soil microbial communities and soil respiration in typical subtropical forests in Southwest China

2021 ◽  
Vol 215 ◽  
pp. 112152
Author(s):  
Yifan Li ◽  
Yunqi Wang ◽  
Weiqiang Zhang
2016 ◽  
Vol 96 ◽  
pp. 180-190 ◽  
Author(s):  
Zhiqin Pei ◽  
David Eichenberg ◽  
Helge Bruelheide ◽  
Wenzel Kröber ◽  
Peter Kühn ◽  
...  

2021 ◽  
Author(s):  
Chi Zhang ◽  
Chao Song ◽  
Donghui Wang ◽  
Wenkuan Qin ◽  
Biao Zhu ◽  
...  

Abstract Purpose: Changes in precipitation amount and land use are expected to greatly impact soil respiration (Rs) of grassland ecosystems. However, little is known about whether they can interactively impact Rs and how plant and soil microbial communities regulate the response of Rs. Methods: Here, we investigated the impacts of altered precipitation amount (–50%, ambient and +50%) and land-use regime (fencing, mowing and grazing) on Rs with a field experiment in the Inner Mongolian grassland.Results: We found that altered precipitation amount impacted Rs and its components across the 3-year study period, while land-use regime alone or its interaction with precipitation amount impacted them in certain years. In addition, changed soil microclimate, especially soil moisture, under altered precipitation amount and land-use regime can impact the components of Rs either directly or indirectly via influencing plant and soil microbial communities.Conclusions: Integrating changing precipitation amount and land-use regime within experiment can produce more accurate insights into grassland Rs, and chronically shifted plant and soil microbial communities under these changes may result in distinct long-term impacts on Rs.


2021 ◽  
Author(s):  
Yi Zhang ◽  
Ying-Zhong Xie ◽  
Hong-Bin Ma ◽  
Juan Zhang ◽  
Le Jing ◽  
...  

Abstract Background: The study evaluates how rainfall change and temperature increase affect microbial communities in the desert grassland of Ningxia Autonomous Region, China to explore the soil microbial community and the relationships among the soil microbial community, chemical properties, soil respiration (SR) and plant biomass under the climate change. We established the field experiment with five levels of rainfall by rainout shelters and two levels of temperature by Open-Top Chamber (OTC). Results: The effect of temperature to soil microbial communities is not significant, but with the continuous increase of rainfall, the microbial community gradually increases. Soil microbial diversity negatively correlated with soil CO2 flux. The α-diversity of microbial communities positively correlated with above-living biomass (ALB) and soil temperature (ST), but negatively correlated with root biomass (RB). Conclusions: Both rainfall and temperature’s rising do not promote the soil community α-diversity, but it can promote soil microbial community β-diversity. Soil microbial communities show resistance to rainfall changing. Soil respiration (SR) will limit soil microbial diversity. Soil organic carbon (SOC), soil total nitrogen (STN), and soil total phosphorus (STP) will promote soil microbial abundance and diversity. ALB and ST will promote the soil α-diversity, but the effect of RB to soil microbial is opposite. These findings maybe provide a reliable theoretical basis for formulating a reasonable response strategy in desert steppe ecosystems.


2017 ◽  
Vol 607-608 ◽  
pp. 1367-1375 ◽  
Author(s):  
Di Tian ◽  
Lai Jiang ◽  
Suhui Ma ◽  
Wenjing Fang ◽  
Bernhard Schmid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document