scholarly journals Estimating climate-induced ‘Nowhere to go’ range shifts of the Himalayan Incarvillea Juss. using multi-model median ensemble species distribution models

2021 ◽  
Vol 121 ◽  
pp. 107127
Author(s):  
Santosh Kumar Rana ◽  
Hum Kala Rana ◽  
Dong Luo ◽  
Hang Sun
2011 ◽  
Vol 62 (9) ◽  
pp. 1043 ◽  
Author(s):  
Nick Bond ◽  
Jim Thomson ◽  
Paul Reich ◽  
Janet Stein

There are few quantitative predictions for the impacts of climate change on freshwater fish in Australia. We developed species distribution models (SDMs) linking historical fish distributions for 43 species from Victorian streams to a suite of hydro-climatic and catchment predictors, and applied these models to explore predicted range shifts under future climate-change scenarios. Here, we present summary results for the 43 species, together with a more detailed analysis for a subset of species with distinct distributions in relation to temperature and hydrology. Range shifts increased from the lower to upper climate-change scenarios, with most species predicted to undergo some degree of range shift. Changes in total occupancy ranged from –38% to +63% under the lower climate-change scenario to –47% to +182% under the upper climate-change scenario. We do, however, caution that range expansions are more putative than range contractions, because the effects of barriers, limited dispersal and potential life-history factors are likely to exclude some areas from being colonised. As well as potentially informing more mechanistic modelling approaches, quantitative predictions such as these should be seen as representing hypotheses to be tested and discussed, and should be valuable for informing long-term strategies to protect aquatic biota.


2014 ◽  
Vol 20 (8) ◽  
pp. 2566-2579 ◽  
Author(s):  
Beth Crase ◽  
Adam Liedloff ◽  
Peter A. Vesk ◽  
Yusuke Fukuda ◽  
Brendan A. Wintle

2020 ◽  
Author(s):  
Philippe Tremblay ◽  
Heath A. MacMillan ◽  
Heather M. Kharouba

AbstractClimate change is driving range shifts, and a lack of cold tolerance is hypothesized to constrain insect range expansion at poleward latitudes. However, few, if any, studies have tested this hypothesis during autumn when organisms are subjected to sporadic low temperature exposure but may not have become cold tolerant yet. In this study, we integrated organismal thermal tolerance measures into species distribution models for larvae of the Giant Swallowtail butterfly, Papilio cresphontes, living at the northern edge of its actively expanding range. Cold hardiness of field-collected larvae was determined using three common metrics of cold-induced physiological thresholds: the supercooling point (SCP), critical thermal minimum (CTmin), and survival following cold exposure. P. cresphontes larvae in autumn have a CTmin of 2.14°C, and were determined to be tolerant of chilling. These larvae have a SCP of −6.6°C and can survive prolonged exposure to −2°C. They generally die, however, at temperatures below their SCP (−8°C), suggesting they are chill tolerant or modestly freeze avoidant. Using this information, we examined the importance of low temperatures at a broad scale, by comparing species distribution models of P. cresphontes based only on environmental data derived from other sources to models that also included the cold tolerance parameters generated experimentally. Our modelling revealed that growing degree-days and precipitation best predicted the distribution of P. cresphontes, while the cold tolerance variables did not explain much variation in habitat suitability. As such, the modelling results were consistent with our experimental results: low temperatures in autumn are unlikely to limit the distribution of P. cresphontes. Further investigation into the ecological relevance of the physiological thresholds determined here will help determine how climate limits the distribution of P. cresphontes. Understanding the factors that limit species distributions is key to predicting how climate change will drive species range shifts.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e72855 ◽  
Author(s):  
Dennis Rödder ◽  
A. Michelle Lawing ◽  
Morris Flecks ◽  
Faraham Ahmadzadeh ◽  
Johannes Dambach ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 1495
Author(s):  
Jehyeok Rew ◽  
Yongjang Cho ◽  
Eenjun Hwang

Species distribution models have been used for various purposes, such as conserving species, discovering potential habitats, and obtaining evolutionary insights by predicting species occurrence. Many statistical and machine-learning-based approaches have been proposed to construct effective species distribution models, but with limited success due to spatial biases in presences and imbalanced presence-absences. We propose a novel species distribution model to address these problems based on bootstrap aggregating (bagging) ensembles of deep neural networks (DNNs). We first generate bootstraps considering presence-absence data on spatial balance to alleviate the bias problem. Then we construct DNNs using environmental data from presence and absence locations, and finally combine these into an ensemble model using three voting methods to improve prediction accuracy. Extensive experiments verified the proposed model’s effectiveness for species in South Korea using crowdsourced observations that have spatial biases. The proposed model achieved more accurate and robust prediction results than the current best practice models.


Sign in / Sign up

Export Citation Format

Share Document