climate change scenario
Recently Published Documents


TOTAL DOCUMENTS

365
(FIVE YEARS 132)

H-INDEX

28
(FIVE YEARS 5)

Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 67
Author(s):  
Shivaji Hausrao Thube ◽  
Thava Prakasa Pandian ◽  
Anthara Bhavishya ◽  
Merin Babu ◽  
Arulappan Josephrajkumar ◽  
...  

Xylosandrus crassiusculus (Coleoptera: Curculionidae: Scolytinae) is reported causing damage to areca palm plantations (Areca catechu L.—Arecaceae) in Karnataka (India). In particular, X. crassiusculus has been observed attacking and successfully reproducing on areca nuts; besides the new host plant record, the data provided here represent the first documented case of spermatophagy for this xyleborine beetle. All infestation symptoms of this polyphagous pest were documented and illustrated. The identity of the scolytid, besides morphologically, was confirmed by its DNA barcoding. Eggs, larvae and pupae were found within the galleries of infested kernels. All galleries of the infested kernels were characterized by the presence of whitish to greyish fungal growth. The fungus was identified as Ambrosiella roeperi, a known symbiont of Xylosandrus crassiusculus. Incidence of this symbiotic insect-fungus complex in the economic part of arecanut, i.e., the kernel, is of serious concern. In a climate change scenario, this beetle with fungal symbionts may pose a serious threat to arecanut production in India and elsewhere.


2022 ◽  
Author(s):  
Gilmar Veriato Fluzer Santos ◽  
Lucas Gamalel Cordeiro ◽  
Claudio Antonio Rojo ◽  
Edison Luiz Leismann

Abstract Global warming has divided the scientific community worldwide with predominance for anthropogenic alarmism. This article aims to project a climate change scenario using a stochastic model of paleotemperature time series and compare it with the dominant thesis. The ARIMA model – an integrated autoregressive process of moving averages, known as Box-Jenkins - was used for this purpose. The results showed that the estimates of the model parameters were below 1°C for a scenario of 100 years which suggests a period of temperature reduction and a probable cooling, contrary to the prediction of the IPCC and the anthropogenic current of an increase in 1.50° C to 2.0° C by the end of this century. Thus, we hope with this study to contribute to the discussion by adding a statistical element of paleoclimate in counterpoint to the current consensus and to placing the debate in a long-term historical dimension, in line with other research present in climate sciences and statistics.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Samuel Reis ◽  
Joana Martins ◽  
Fátima Gonçalves ◽  
Cristina Carlos ◽  
João A. Santos

The European grapevine moth (Lobesia botrana; Denis and Schiffermüller, 1775) is considered a key pest for grapevine (Vitis vinifera L.) in the Douro Region, Portugal. The phenology of both the grapevine and the pest has changed in the last decades due to the increase in temperature. Here, we assess the potential impact of climate change on the (a)synchrony of both species. The results show that the phenological stages (budburst, flowering and veraison) undergo an advancement throughout the region (at an ~1 km resolution) under a climate change scenario (Representative Concentration Pathways, RCP8.5) for the period 2051–2080, with respect to the historic period (1989–2015). For cv. Touriga Nacional and Touriga Franca, the budburst advances up to 14 days, whereas for flowering and veraison the advancements are up to 10 days (mainly at low elevations along the Douro River). For the phenology of Lobesia botrana, earliness was also verified in the three flights (consequently there may be more generations per year), covering the entire region. Furthermore, the third flight advances further compared to the others. For both varieties, the interaction between the third flight (beginning and peak) and the veraison date is the most relevant modification under the future climate change scenario (RCP8.5, 2051–2080). The aforementioned outcomes from the phenology models help to better understand the possible shifts of both trophic levels in the region under future climate, giving insights into their future interactions.


2021 ◽  
Author(s):  
Tosca van Gelderen ◽  
Jerome Montfort ◽  
José Antonio Álvarez-Diós ◽  
Violette Thermes ◽  
Francesc Piferrer ◽  
...  

MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression in a wide variety of physiological processes, including those related to the reproductive system. Although in the last decade a plethora of miRNAs has been reported, the miRNA alterations occurred by environmental cues and their biological functions have not yet been elucidated. With the aim to identify epigenetic regulations mediated by miRNAs in the gonads in a climate change scenario, zebrafish (Danio rerio) were subjected to high temperatures during sex differentiation (18-32 days post fertilization, dpf), a treatment that results in male-skewed sex ratios. Once the fish reached adulthood (90 dpf), ovaries and testes were sequenced by high-throughput technologies. About 101 million high-quality reads were obtained from gonadal samples. Analyses of the expression levels of the miRNAs identified a total of 23 and 1 differentially expressed (DE) miRNAs in ovaries and testes, respectively, two months after the heat treatment. Most of the identified miRNAs were involved in human sex-related cancer. After retrieving 3’ UTR regions, ~400 predicted targets of the 24 DE miRNAs were obtained, some with reproduction-related functions. Their synteny in the zebrafish genome was, for more than half of them, in the chromosomes 7, 2, 4, 3 and 11 in the ovaries, chromosome 4 being the place where the predicted sex-associated-region (sar) is localized in wild zebrafish. Further, spatial localization in the gonads of two selected miRNAs (miR-122-5p and miR-146-5p) showed exclusive expression in the ovarian germ cells. The present study expands the catalog of sex-specific miRNAs and deciphers, for the first time, thermosensitive miRNAs in the zebrafish gonads that might be used as potential epimarkers to predict environmental past events.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Maurizio Iovane ◽  
Aurora Cirillo ◽  
Luigi Gennaro Izzo ◽  
Claudio Di Vaio ◽  
Giovanna Aronne

Olea europaea L. is a crop typical of the Mediterranean area that has an important role in economy, society, and culture of this region. Climate change is expected to have significant impact on this crop, which is typically adapted to certain pedo-climatic characteristics of restricted geographic areas. In this scenario, the aim of this study was to evaluate the time-course response of pollen viability to different combinations of temperature and humidity. The study was performed comparing flowering time and pollen functionality of O. europaea from twelve cultivars growing at the same site belonging to the Campania olive collection in Italy. Pollen was incubated at 12 °C, 22 °C, and 36 °C in combination with 50% RH or 100% RH treatments for 5 days. The results highlighted that a drastic loss of pollen viability occurs when pollen is subjected to a combination of high humidity and high temperature, whereas 50% RH had less impact on pollen thermotolerance, because most cultivars preserved a high pollen viability over time. In the ongoing climate change scenario, it is critical to assess the effect of increasing temperatures on sensitive reproductive traits such as pollen viability to predict possible reduction in crop yield. Moreover, the results highlighted that the effect of temperature increase on pollen thermotolerance should be evaluated in combination with other environmental factors such as humidity conditions. The screening of olive cultivars based on pollen thermotolerance is critical in the ongoing climate change scenario, especially considering that the economic value of this species relies on successful fertilization and embryo development, and also that production cycle of Olea europaea can be longer than a hundred years.


MAUSAM ◽  
2021 ◽  
Vol 59 (3) ◽  
pp. 361-366
Author(s):  
K. SEETHARAM

2021 ◽  
Vol 11 (23) ◽  
pp. 11133
Author(s):  
Rodolfo Lizcano-Toledo ◽  
Marino Pedro Reyes-Martín ◽  
Luisella Celi ◽  
Emilia Fernández-Ondoño

This work performs a review of the relevant aspects of agronomic dynamics of phosphorus (P) in the soil–plant relationship as a community (crop ecophysiology), the effect of environmental conditions and global warming on the redistribution and translocation of P concentrations in some commercial crops, and the use of good agricultural practices with an aim to improve the efficiency of the element. The research focuses on Northern Europe, North-Eastern Asia, Oceania, North America, and the tropical area of Latin America. This review covers general research and specific works on P found in the literature, 70% of which date from the last 10 years, as well as some older studies that have been of great relevance as references and starting points for more recent investigations. The dynamics of P in a system implies taking into account genetic aspects of the plant, component of the soil–plant–fertilizer–environment relationship, and use of technologies at the molecular level. In addition, in a climate change scenario, the availability of this element can significantly change depending on whether it is labile or non-labile.


Sign in / Sign up

Export Citation Format

Share Document