scholarly journals The role of bivalves in the Balgzand: First steps on an integrated modelling approach

2017 ◽  
Vol 359 ◽  
pp. 34-48 ◽  
Author(s):  
S. Saraiva ◽  
L. Fernandes ◽  
J. van der Meer ◽  
R. Neves ◽  
S.A.L.M. Kooijman
Author(s):  
Joseph Ajaefobi ◽  
Aysin Rahimifard ◽  
Richard Weston

Enterprises (business organisations) are increasingly operating under uncertain conditions arising from: governments that introduce new regulations; a market place which is shaped by ongoing change in customer requirements; change in capital markets that orient overall market directions; an advancing base of technology; and increasing competition which can arise from a growing number of sources (Monfared, 2000). Consequently, organisations are expected to change rapidly in response to emerging requirements. Classical theories and more recently ‘method-based’ organisation (re)design and change approaches have been proposed and tried with varying degrees of successes. This chapter contribution discusses the role of enterprise and simulation modelling in support of organisation (re)design and change. The capabilities and constraints of some widely acknowledged public domain enterprise modelling frameworks and methods are reviewed. A modelling approach which integrates the use of enterprise modelling (EM), causal loop modelling (CLM), and simulation modelling (SM) is described. The approach enables the generation of coherent and semantically rich models of organisations. The integrated modelling approach has been applied and tested in a number of manufacturing enterprises (MEs) and one case study application is described.


2000 ◽  
Vol 31 ◽  
pp. 222-228 ◽  
Author(s):  
Gwenn E. Flowers ◽  
Garry K. C. Clarke

AbstractOutbursts of subglacial water from numerous alpine glaciers have been observed and documented. Such events tend to occur in spring and are thus attributed to an inability of the winter subglacial drainage system (characterized by high water pressure and low capacity) to accommodate a sudden and profuse influx of surface meltwater. Prior to a release event, bursts of glacier motion are common, and the release then precipitates the restoration of summer plumbing that damps or terminates surface acceleration. The events bear witness to the importance of interactions between surface melt, runoff, en-glacial water storage and internal routing, in addition to subglacial drainage morphology. Using a distributed numerical model to simultaneously solve surficial, englacial and subglacial water-transport equations, we investigate the role of these components in a hydro-mechanical event observed at Trapridge Glacier, YukonTerritory, Canada, in July 1990.


2011 ◽  
pp. 370-396
Author(s):  
Joseph Ajaefobi ◽  
Aysin Rahimifard ◽  
Richard Weston

Enterprises (business organisations) are increasingly operating under uncertain conditions arising from: governments that introduce new regulations; a market place which is shaped by ongoing change in customer requirements; change in capital markets that orient overall market directions; an advancing base of technology; and increasing competition which can arise from a growing number of sources (Monfared, 2000). Consequently, organisations are expected to change rapidly in response to emerging requirements. Classical theories and more recently ‘method-based’ organisation (re)design and change approaches have been proposed and tried with varying degrees of successes. This chapter contribution discusses the role of enterprise and simulation modelling in support of organisation (re)design and change. The capabilities and constraints of some widely acknowledged public domain enterprise modelling frameworks and methods are reviewed. A modelling approach which integrates the use of enterprise modelling (EM), causal loop modelling (CLM), and simulation modelling (SM) is described. The approach enables the generation of coherent and semantically rich models of organisations. The integrated modelling approach has been applied and tested in a number of manufacturing enterprises (MEs) and one case study application is described.


Author(s):  
Jussi T. Koivumäki ◽  
Jouni Takalo ◽  
Topi Korhonen ◽  
Pasi Tavi ◽  
Matti Weckström

When developing large-scale mathematical models of physiology, some reduction in complexity is necessarily required to maintain computational efficiency. A prime example of such an intricate cell is the cardiac myocyte. For the predictive power of the cardiomyocyte models, it is vital to accurately describe the calcium transport mechanisms, since they essentially link the electrical activation to contractility. The removal of calcium from the cytoplasm takes place mainly by the Na + /Ca 2+ exchanger, and the sarcoplasmic reticulum Ca 2+ ATPase (SERCA). In the present study, we review the properties of SERCA, its frequency-dependent and β -adrenergic regulation, and the approaches of mathematical modelling that have been used to investigate its function. Furthermore, we present novel theoretical considerations that might prove useful for the elucidation of the role of SERCA in cardiac function, achieving a reduction in model complexity, but at the same time retaining the central aspects of its function. Our results indicate that to faithfully predict the physiological properties of SERCA, we should take into account the calcium-buffering effect and reversible function of the pump. This ‘uncomplicated’ modelling approach could be useful to other similar transport mechanisms as well.


Sign in / Sign up

Export Citation Format

Share Document