Tidal current ellipses in a three-dimensional baroclinic numerical model of the Gulf of California

2005 ◽  
Vol 64 (2-3) ◽  
pp. 519-530 ◽  
Author(s):  
S.G. Marinone ◽  
M.F. Lavín
2008 ◽  
Vol 71 (1-2) ◽  
pp. 149-158 ◽  
Author(s):  
S.G. Marinone ◽  
M.J. Ulloa ◽  
A. Parés-Sierra ◽  
M.F. Lavín ◽  
R. Cudney-Bueno

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1095
Author(s):  
Vanesa Magar ◽  
Victor M. Godínez ◽  
Markus S. Gross ◽  
Manuel López-Mariscal ◽  
Anahí Bermúdez-Romero ◽  
...  

We analyzed the peak spring tidal current speeds, annual mean tidal power densities ( T P D ) and annual energy production ( A E P ) obtained from experiment 06.1, referred as the “HYCOM model” throughout, of the three dimensional (3D), global model HYCOM in an area covering the Baja California Pacific and the Gulf of California. The HYCOM model is forced with astronomical tides and surface winds alone, and therefore is particularly suitable to assess the tidal current and wind-driven current contribution to in-stream energy resources. We find two areas within the Gulf of California, one in the Great Island Region and one in the Upper Gulf of California, where peak spring tidal flows reach speeds of 1.1 m per second. Second to fifth-generation tidal stream devices would be suitable for deployment in these two areas, which are very similar in terms of tidal in-stream energy resources. However, they are also very different in terms of sediment type and range in water depth, posing different challenges for in-stream technologies. The highest mean T P D value when excluding TPDs equal or less than 50 W m−2 (corresponding to the minimum velocity threshold for energy production) is of 172.8 W m−2, and is found near the town of San Felipe, at (lat lon) = (31.006–114.64); here energy would be produced during 39.00% of the time. Finally, wind-driven currents contribute very little to the mean T P D and the total A E P . Therefore, the device, the grid, and any energy storage plans need to take into account the periodic tidal current fluctuations, for optimal exploitation of the resources.


2014 ◽  
Vol 123 ◽  
pp. 64-73 ◽  
Author(s):  
M.W. Santiago-García ◽  
S.G. Marinone ◽  
O.U. Velasco-Fuentes

Author(s):  
Vanesa Magar ◽  
Victor M. Godínez ◽  
Markus S. Gross ◽  
Manuel López-Mariscal ◽  
Anahí Bermúdez-Romero ◽  
...  

We analyzed the peak spring tidal current speeds, annual mean tidal power densities (TPD) and annual energy production (AEP) obtained from experiment 06.1, referred as the "HYCOM model" throughout, of the three dimensional (3D), global model HYCOM in an area covering the Baja California Pacific and the Gulf of California. The HYCOM model is forced with astronomical tides and surface winds alone, and therefore is particularly suitable to assess the tidal current and wind-driven current contribution to in-stream energy resources. We find two areas within the Gulf of California, one in the Great Island Region and one in the Upper Gulf of California, where peak spring tidal flows reach speeds of 1.1 meters per second. Second to fifth-generation tidal stream devices would be suitable for deployment in these two areas, which are very similar in terms of tidal in-stream energy resources. However, they are also very different in terms of sediment type and range in water depth, posing different challenges for in-stream technologies. The highest mean TPD value when excluding TPDs equal or less than 50 W/m2 (corresponding to the minimum velocity threshold for energy production) is of 172.8 W/m2, and is found near the town of San Felipe, at (lat lon) = (31.006 -114.64); here energy would be produced during 39.00% of the time. Finally, wind-driven currents contribute very little to the mean TPD and the total AEP. Therefore, the device, the grid, and any energy storage plans need to take into account the periodic tidal current fluctuations, for optimal exploitation of the resources.


Author(s):  
Vanesa Magar ◽  
Victor M. Godínez ◽  
Markus S. Gross ◽  
Manuel López-Mariscal ◽  
Anahí Bermúdez-Romero ◽  
...  

We analyzed the peak spring tidal current speeds, annual mean tidal power densities (TPD) and annual energy production (AEP) obtained from experiment 06.1, referred as the "HYCOM model" throughout, of the three dimensional (3D), global model HYCOM in an area covering the Baja California Pacific and the Gulf of California. The HYCOM model is forced with astronomical tides and surface winds alone, and therefore is particularly suitable to assess the tidal current and wind-driven current contribution to in-stream energy resources. We find two areas within the Gulf of California, one in the Great Island Region and one in the Upper Gulf of California, where peak spring tidal flows reach speeds of 1.1 meters per second. Second to fifth-generation tidal stream devices would be suitable for deployment in these two areas, which are very similar in terms of tidal in-stream energy resources. However, they are also very different in terms of sediment type and range in water depth, posing different challenges for in-stream technologies. The highest mean TPD value when excluding TPDs equal or less than 50 W/m2 (corresponding to the minimum velocity threshold for energy production) is of 172.8 W/m2, and is found near the town of San Felipe, at (lat lon) = (31.006 -114.64); here energy would be produced during 39.00% of the time. Finally, wind-driven currents contribute very little to the mean TPD and the total AEP. Therefore, the device, the grid, and any energy storage plans need to take into account the periodic tidal current fluctuations, for optimal exploitation of the resources.


Author(s):  
Yasuo NIIDA ◽  
Norikazu NAKASHIKI ◽  
Takaki TSUBONO ◽  
Shin’ichi SAKAI ◽  
Teruhisa OKADA

1998 ◽  
Vol 26 ◽  
pp. 174-178 ◽  
Author(s):  
Peter Gauer

A physically based numerical model of drifting and blowing snow in three-dimensional terrain is developed. The model includes snow transport by saltation and suspension. As an example, a numerical simulation for an Alpine ridge is presented and compared with field measurements.


Sign in / Sign up

Export Citation Format

Share Document