scholarly journals In-Stream Energy by Tidal and Wind-Driven Currents: An Analysis for the Gulf of California

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1095
Author(s):  
Vanesa Magar ◽  
Victor M. Godínez ◽  
Markus S. Gross ◽  
Manuel López-Mariscal ◽  
Anahí Bermúdez-Romero ◽  
...  

We analyzed the peak spring tidal current speeds, annual mean tidal power densities ( T P D ) and annual energy production ( A E P ) obtained from experiment 06.1, referred as the “HYCOM model” throughout, of the three dimensional (3D), global model HYCOM in an area covering the Baja California Pacific and the Gulf of California. The HYCOM model is forced with astronomical tides and surface winds alone, and therefore is particularly suitable to assess the tidal current and wind-driven current contribution to in-stream energy resources. We find two areas within the Gulf of California, one in the Great Island Region and one in the Upper Gulf of California, where peak spring tidal flows reach speeds of 1.1 m per second. Second to fifth-generation tidal stream devices would be suitable for deployment in these two areas, which are very similar in terms of tidal in-stream energy resources. However, they are also very different in terms of sediment type and range in water depth, posing different challenges for in-stream technologies. The highest mean T P D value when excluding TPDs equal or less than 50 W m−2 (corresponding to the minimum velocity threshold for energy production) is of 172.8 W m−2, and is found near the town of San Felipe, at (lat lon) = (31.006–114.64); here energy would be produced during 39.00% of the time. Finally, wind-driven currents contribute very little to the mean T P D and the total A E P . Therefore, the device, the grid, and any energy storage plans need to take into account the periodic tidal current fluctuations, for optimal exploitation of the resources.

Author(s):  
Vanesa Magar ◽  
Victor M. Godínez ◽  
Markus S. Gross ◽  
Manuel López-Mariscal ◽  
Anahí Bermúdez-Romero ◽  
...  

We analyzed the peak spring tidal current speeds, annual mean tidal power densities (TPD) and annual energy production (AEP) obtained from experiment 06.1, referred as the "HYCOM model" throughout, of the three dimensional (3D), global model HYCOM in an area covering the Baja California Pacific and the Gulf of California. The HYCOM model is forced with astronomical tides and surface winds alone, and therefore is particularly suitable to assess the tidal current and wind-driven current contribution to in-stream energy resources. We find two areas within the Gulf of California, one in the Great Island Region and one in the Upper Gulf of California, where peak spring tidal flows reach speeds of 1.1 meters per second. Second to fifth-generation tidal stream devices would be suitable for deployment in these two areas, which are very similar in terms of tidal in-stream energy resources. However, they are also very different in terms of sediment type and range in water depth, posing different challenges for in-stream technologies. The highest mean TPD value when excluding TPDs equal or less than 50 W/m2 (corresponding to the minimum velocity threshold for energy production) is of 172.8 W/m2, and is found near the town of San Felipe, at (lat lon) = (31.006 -114.64); here energy would be produced during 39.00% of the time. Finally, wind-driven currents contribute very little to the mean TPD and the total AEP. Therefore, the device, the grid, and any energy storage plans need to take into account the periodic tidal current fluctuations, for optimal exploitation of the resources.


Author(s):  
Vanesa Magar ◽  
Victor M. Godínez ◽  
Markus S. Gross ◽  
Manuel López-Mariscal ◽  
Anahí Bermúdez-Romero ◽  
...  

We analyzed the peak spring tidal current speeds, annual mean tidal power densities (TPD) and annual energy production (AEP) obtained from experiment 06.1, referred as the "HYCOM model" throughout, of the three dimensional (3D), global model HYCOM in an area covering the Baja California Pacific and the Gulf of California. The HYCOM model is forced with astronomical tides and surface winds alone, and therefore is particularly suitable to assess the tidal current and wind-driven current contribution to in-stream energy resources. We find two areas within the Gulf of California, one in the Great Island Region and one in the Upper Gulf of California, where peak spring tidal flows reach speeds of 1.1 meters per second. Second to fifth-generation tidal stream devices would be suitable for deployment in these two areas, which are very similar in terms of tidal in-stream energy resources. However, they are also very different in terms of sediment type and range in water depth, posing different challenges for in-stream technologies. The highest mean TPD value when excluding TPDs equal or less than 50 W/m2 (corresponding to the minimum velocity threshold for energy production) is of 172.8 W/m2, and is found near the town of San Felipe, at (lat lon) = (31.006 -114.64); here energy would be produced during 39.00% of the time. Finally, wind-driven currents contribute very little to the mean TPD and the total AEP. Therefore, the device, the grid, and any energy storage plans need to take into account the periodic tidal current fluctuations, for optimal exploitation of the resources.


Author(s):  
Anahí Bermúdez-Romero ◽  
Vanesa Magar ◽  
Markus S. Gross ◽  
Victor M. Godínez ◽  
Manuel López-Mariscal ◽  
...  

While many in-steam tidal energy resource studies have been carried out globally, very few studies have assessed the effect of seabed changes on tidal energy resources. For coastal regions in particular, where the seabed is generally more mobile than in deep waters, bathymetric evolution could have a significant effect on tidal energy production. Here two high-resolution models, one purely hydrodynamic and one morphodynamic, are used to analyse the potential effect of natural morphodynamic evolution on tidal energy resources at two macro-tidal sandy bays, Adaír Bay and San Jorge Bay, in the Upper Gulf of California, Mexico. The high-resolution models are validated using a low-resolution model and ADCP observations to assess the agreement between model predictions and observations of tides at three ADCP moorings within the domain of interest. The models’ skill is evaluated using several error statistics such as the mean relative error, the root mean square error (RMSE), and the correlation coefficient. It was found that the regions with the largest bed changes, and also the largest renewable energy resources, were near the shore. Moreover, the results indicated a good correlation between a) regions with the most significant depth changes, and b) the regions where the difference in annual energy production with and without depth change was largest. Finally, the morphodynamic model was run for two years, and the evolution of a zonal profile (in the west-east direction) off the coast at the southeastern corner of Adaír Bay was inspected. This profile evolved towards a featureless equilibrium profile, in good agreement with the morphological classification for macro-tidal sandy environments and with the model assumptions. But most importantly, this natural evolution would not be detrimental to tidal energy exploitation at the site.


2013 ◽  
Vol 774-776 ◽  
pp. 262-266
Author(s):  
Bing Chen Liang ◽  
Tao Tao Zhang ◽  
Hong Da Shi

In the present work, the tidal stream energy in surrounding coastal zones of ZTD is calculated. The tidal current velocity is gotten by three dimensional numerical modeling. The tidal current model is validated by measurement of tidal current observed in 4 points surrounding ZTD. The numerical results given by the tidal current model already shows that: the tidal current velocities given by the model agree with the measured velocities generally. The characteristics of tidal currents around ZTD are analyzed and the following tidal stream energy density is calculated. The maximum tidal stream energy flux of unit width occurs around the middle locations of ZTD southern areas.


2021 ◽  
Author(s):  
Anne Levasseur ◽  
Hadrien Gousset ◽  
Delphine Le Bris

<p>The objective of this work is to assess the tidal stream energy potential in the Scheldt estuary, through the application of technical specifications from the International Electrotechnical Commission (IEC). The <span>IEC TS 62600-201:2015 establishes a system for analysing and reporting, through estimation or direct measurement, the theoretical tidal current energy resource in oceanic areas including estuaries.</span></p><p>Velocity distribution at the potential deployment site is examined using a high-resolution three-dimensional model of the ocean currents based on the TELEMAC system. The mesh size ranges from 400 m at the mouth of the estuary to 50 m near the potential pilot sites. The unstructured mesh size allows a realistic representation of the detailed bathymetric features, the narrow straits and channels where the most intense currents are. The model is forced at the lateral boundaries with sea surface elevation predicted by the global tidal model Finite Element Solution 2012 (FES 2012) and the river flow from the Scheldt River. The model is calibrated using public data obtained from water level measurements at the ports of Vlissingen, Breskens and Cadzand.</p><p>The velocity magnitude and direction calculated over one month at the pilot site are extrapolated over a year by means of a harmonic analysis. At the depth of the tidal current turbine (-2.5m below the sea level), the annual mean of the velocity magnitude is 0.7 m/s with a maximum of 1.6 m/s for the selected pilot site. Velocity magnitudes are in the range of 0.5 to 1 m/s for 54.9% of the time, and above 1 m/s for 17.7% of the time. There are two prevailing directions for the water flow: 47% of current velocity is eastward (direction 70°-90°N) and 46% is westward (direction 250°-260°N). The expected annual energy production is calculated using the modelled velocity distribution and the technical characteristics of the vertical axis water turbine developed by Water2Energy.</p><p>The results of this analysis shows that the site has limited potential in terms of energy production.  However, the site could still be relevant as a pilot demonstration site for shorter durations. The analysis based on IEC technical specifications will be useful for the identification and comparison of more energetic sites in the future. Also, this results provides feedback to the IEC on the usability of the technical specification for improvements.</p><p>This work is part of the ENCORE project (ENergizing COastal Regions with Offshore Renewable Energy), which aims is to advance four offshore renewable energy technologies through the application of IEC technical specifications in a structured and collaborative process. ENCORE is funded by the European Interreg 2 Seas programme and co-funded by the European Regional Development Fund (ERDF) under grant agreement No 2S08-004.</p>


2017 ◽  
Vol 8 (1) ◽  
pp. 10-18 ◽  
Author(s):  
J SatheeshKumar ◽  
R Balaji

A finite difference–based three-dimensional modeling has been conducted to evaluate tidal power density at different locations along the Gulf of Khambhat, India. The model uses the Navier–Stokes transport equation in three-dimensional plane under the assumption of shallow water and Boussinesq. The model results were validated with observed water levels and currents available in the literature. The Gulf has strong and varying currents and associated circulation patterns, especially in the northern region, due to complex bathymetry. The current velocities and corresponding power densities were computed for different vertical layers of the entire model domain. The maximum tidal current velocities are found in the northern region along the narrowing part of the Gulf. The estimated values are 2.6 and 1.5 m/s during spring and neap tidal cycles, respectively. Then, the energy flux approximation method has been used to estimate the tidal power densities along the gulf spatially and temporally. The estimated maximum available potential is about 3 and 0.7 kW/m2 during spring and neap at two arbitrary point locations, respectively.


2021 ◽  
Vol 9 (4) ◽  
pp. 411
Author(s):  
Anahí Bermúdez-Romero ◽  
Vanesa Magar ◽  
Markus S. Gross ◽  
Victor M. Godínez ◽  
Manuel López-Mariscal ◽  
...  

Because of the need to diversify the renewable energy matrix and because hydrokinetic tidal energy technologies are mature, many in-stream tidal energy resource studies are available globally. Still, there are many questions regarding the effect of seabed changes on tidal energy resources. For coastal regions in particular, where the seabed is generally more mobile than in deep waters, bathymetric evolution could significantly affect tidal energy production. Here, two models are used to analyse the potential effect of natural morphodynamic change on tidal energy resources at two macro-tidal sandy bays, Adaír Bay and San Jorge Bay, in the Upper Gulf of California, Mexico. One of the models is (purely) hydrodynamic, and the other is a morphodynamic model (with hydrodynamic–morphodynamic coupling). The models are validated against tidal current observations obtained with acoustic Doppler current profilers in the region of interest, using three different error statistics, which showed good agreement between models and observations. The results also showed that the most significant bed changes and the largest renewable energy resources are located near the shore. Moreover, there was a good correlation between (a) regions with the most significant depth changes and (b) the areas where the difference in annual energy production with and without depth change was largest. Finally, a two-year simulation with the morphodynamic model permitted to analyse the seabed evolution of a zonal profile off Punta Choya, the headland between the two bays. This profile evolved towards a featureless equilibrium, as expected from the morphological classification for macro-tidal sandy environments under a dominant tidal forcing. However, most importantly, this natural evolution would not be detrimental to tidal energy exploitation at the site.


Author(s):  
Joost den Haan

The aim of the study is to devise a method to conservatively predict a tidal power generation based on relatively short current profile measurement data sets. Harmonic analysis on a low quality tidal current profile measurement data set only allowed for the reliable estimation of a limited number of constituents leading to a poor prediction of tidal energy yield. Two novel, but very different approaches were taken: firstly a quasi response function is formulated which combines the currents profiles into a single current. Secondly, a three dimensional vectorial tidal forcing model was developed aiming to support the harmonic analysis with upfront knowledge of the actual constituents. The response based approach allowed for a reasonable prediction. The vectorial tidal forcing model proved to be a viable start for a full featuring numerical model; even in its initial simplified form it could provide more insight than the conventional tidal potential models.


Sign in / Sign up

Export Citation Format

Share Document