The use of remote sensing and linear wave theory to model local wave energy around Alphonse Atoll, Seychelles

2011 ◽  
Vol 95 (4) ◽  
pp. 349-358 ◽  
Author(s):  
S. Hamylton
2020 ◽  
Vol 12 (9) ◽  
pp. 3657 ◽  
Author(s):  
Chutipat Foyhirun ◽  
Duangrudee Kositgittiwong ◽  
Chaiwat Ekkawatpanit

Ocean wave energy is an interesting renewable energy because it will never run out and can be available all the time. If the wave energy is to be used, then the feasibility study of localized wave potential has to be studied. This goal is to study the potential of waves in the Andaman Sea. The Simulating WAves Nearshore (SWAN) model was used to calculate the significant wave heights, which were validated with the measurement data of the Jason-2 satellite. The coastal area of Phuket and Phang Nga provinces are suitable locations for studying wave energy converters because they have high significant wave height. Moreover, this study used computational fluid dynamics (CFD) for the simulation of wave behavior in accordance with wave parameters from the SWAN model. The wave height simulated from CFD was validated with linear wave theory. The results found that it was in good agreement with linear wave theory. It can be applied for a simulation of the wave energy converter.


1998 ◽  
Vol 65 (1) ◽  
pp. 141-149
Author(s):  
J. F. Hall

This paper develops a theory for geometrically nonlinear waves in strings and presents analytical solutions for a traveling kink, generation of a geometric wave with its accompanying P wave, reflection of a kink at a fixed support and at a smooth sliding support, and interaction of a P wave and a kink. Conditions that must be satisfied for linear wave theory to hold are derived. The nonlinear theory is demonstrated by extending an historically important solution of the barrage balloon problem that was obtained during World War II.


Author(s):  
Hans Bihs ◽  
Muk Chen Ong

Two-dimensional (2D) numerical simulations are performed to investigate the flows past partially-submerged circular cylinders in free surface waves. The 2D simulations are carried out by solving the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the k-ω turbulence model. The level set method is employed to model the free-surface waves. Validation studies of a numerical wave tank have been performed by comparing the numerical results with the analytical results obtained from the linear-wave theory. Wave forces on the partially-submerged cylinders have been calculated numerically and compared with the published theoretical and experimental data under regular-wave conditions. The free-surface elevations around the cylinders have been investigated and discussed.


Sign in / Sign up

Export Citation Format

Share Document