scholarly journals Straight Running Stability Control Based on Optimal Torque Distribution for a Four in-wheel Motor Drive Electric Vehicle

2017 ◽  
Vol 105 ◽  
pp. 2825-2830 ◽  
Author(s):  
Yu Cao ◽  
Li Zhai ◽  
Tianmin Sun ◽  
Hongtao Gu
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Shu Wang ◽  
Xuan Zhao ◽  
Qiang Yu

Vehicle stability control should accurately interpret the driving intention and ensure that the actual state of the vehicle is as consistent as possible with the desired state. This paper proposes a vehicle stability control strategy, which is based on recognition of the driver’s turning intention, for a dual-motor drive electric vehicle. A hybrid model consisting of Gaussian mixture hidden Markov (GHMM) and Generalized Growing and Pruning RBF (GGAP-RBF) neural network is constructed to recognize the driver turning intention in real time. The turning urgency coefficient, which is computed on the basis of the recognition results, is used to establish a modified reference model for vehicle stability control. Then, the upper controller of the vehicle stability control system is constructed using the linear model predictive control theory. The minimum of the quadratic sum of the working load rate of the vehicle tire is taken as the optimization objective. The tire-road adhesion condition, performance of the motor and braking system, and state of the motor are taken as constraints. In addition, a lower controller is established for the vehicle stability control system, with the task of optimizing the allocation of additional yaw moment. Finally, vehicle tests were carried out by conducting double-lane change and single-lane change experiments on a platform for dual-motor drive electric vehicles by using the virtual controller of the A&D5435 hardware. The results show that the stability control system functions appropriately using this control strategy and effectively improves the stability of the vehicle.


2019 ◽  
Vol 49 (1) ◽  
pp. 47-58
Author(s):  
Binbin Sun ◽  
Tiezhu Zhang ◽  
Wenqing Ge ◽  
Cao Tan ◽  
Song Gao

This paper presents mathematical methods to develop a high-efficiency and real-time driving energy management for a front-and-rear-motor-drive electric vehicle (FRMDEV), which is equipped with an induction motor (IM) and a permanent magnet synchronous motor (PMSM). First of all, in order to develop motor-loss models for energy optimization, database of with three factors, which are speed, torque and temperature, was created to characterize motor operation based on HALTON sequence method. The response surface model of motor loss, as the function of the motor-operation database, was developed with the use of Gauss radial basis function (RBF). The accuracy of the motor-loss model was verified according to statistical analysis. Then, in order to create a two-factor energy management strategy, the modification models of the torque required by driver (Td) and the torque distribution coefficient (β) were constructed based on the state of charge (SOC) of battery and the motor temperature, respectively. According to the motor-loss models, the fitness function for optimization was designed, where the influence of the non-work on system consumption was analyzed and calculated. The optimal β was confirmed with the use of the off-line particle swarm optimization (PSO). Moreover, to achieve both high accuracy and real-time performance under random vehicle operation, the predictive model of the optimal β was developed based on the hybrid RBF. The modeling and predictive accuracies of the predictive model were analyzed and verified. Finally, a hardware-in-loop (HIL) test platform was developed and the predictive model was tested. Test results show that, the developed predictive model of β based on hybrid RBF can achieve both real-time and economic performances, which is applicable to engineering application. More importantly, in comparison with the original torque distribution based on rule algorithm, the torque distribution based on hybrid RBF is able to reduce driving energy consumption by 9.51% under urban cycle.


Author(s):  
Zhang Chuanwei ◽  
Zhang Dongsheng ◽  
Wang Rui ◽  
Zhang Rongbo ◽  
Wen Jianping

2019 ◽  
Vol 10 (2) ◽  
pp. 15 ◽  
Author(s):  
Junchang Wang ◽  
Junmin Li

In order to improve the endurance mileage and stability of an electric vehicle at the same time, a hierarchical coordinated control method of an in-wheel motor drive electric vehicle based on energy optimization is presented in this paper. The driving architecture of an in-wheel motor drive electric vehicle is developed, and a corresponding simulation model is established in CarSim software; then, the bicycle model of an electric vehicle is derived from vehicle dynamic equations. The energy-saving feasibility of an in-wheel motor drive electric vehicle is analyzed by a motor efficiency map, and on the basis of this, the hierarchical coordinated control method is proposed to achieve the simultaneous energy optimization control and stability control of the electric vehicle. The results show that the energy consumption is decreased by 32.41%, 45.92%, and 4.07% in different simulation manoeuver cases, and the vehicle stability can be ensured by the proposed control method.


ICCTP 2009 ◽  
2009 ◽  
Author(s):  
Shaobo Xie ◽  
Cheng Lin ◽  
Peng Liu ◽  
Xiaowei Zhang

Sign in / Sign up

Export Citation Format

Share Document