scholarly journals Torque Distribution Algorithm for Stability Control of Electric Vehicle Driven by Four In-Wheel Motors Under Emergency Conditions

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 104737-104748 ◽  
Author(s):  
Lie Guo ◽  
Pingshu Ge ◽  
Dachuan Sun
2012 ◽  
Vol 591-593 ◽  
pp. 251-258
Author(s):  
Wen Wei Wang ◽  
Cheng Lin ◽  
Wan Ke Cao ◽  
Jiao Yang Chen

Multi-motor wheel independent driving technology is an important direction of electric vehicle(EV). Based on the analysis of the features of existing independent driving system of electric vehicle, a new dual-motor independent driving system configuration was designed. Complete parameters matching and simulation analysis of the system include motor, reducer, and battery. Distributed control network architecture based on high-speed CAN bus was developed, and information scheduling was optimized and real-time predictability was analyzed based on the rate monotonic (RM) algorithm and jitter margin index. The vehicle lateral stability control was achieved based on coordinated electro-hydraulic active braking. Based on the new dual-motor independent driving system, a new battery electric car was designed and tested. The results show that the vehicle has excellent dynamic and economic performance.


Author(s):  
Justin Sill ◽  
Beshah Ayalew

This paper presents a predictive vehicle stability control (VSC) strategy that distributes the drive/braking torques to each wheel of the vehicle based on the optimal exploitation of the available traction capability for each tire. To this end, tire saturation levels are defined as the deficiency of a tire to generate a force that linearly increases with the relevant slip quantities. These saturation levels are then used to set up an optimization objective for a torque distribution problem within a novel cascade control structure that exploits the natural time scale separation of the slower lateral handling dynamics of the vehicle from the relatively faster rotational dynamics of the wheel/tire. The envisaged application of the proposed vehicle stability strategy is for vehicles with advanced and emerging pure electric, hybrid electric or hydraulic hybrid power trains featuring independent wheel drives. The developed predictive control strategy is evaluated for, a two-axle truck featuring such an independent drive system and subjected to a transient handling maneuver.


2020 ◽  
Vol 54 (6) ◽  
pp. 501-512
Author(s):  
Chuanwei Zhang ◽  
Rongbo Zhang ◽  
Rui Wang ◽  
Bo Chang ◽  
Jian Ma

2013 ◽  
Vol 658 ◽  
pp. 602-608 ◽  
Author(s):  
Cheng Lin ◽  
Chun Lei Peng

This paper presents the design of mixed H∞/H2Output Feedback Controller for Independent Drive Electric Vehicle Stability Control. It generates yaw moment by applying driving intervention at front Independent driving wheels according to the vehicle states. The performance of the proposed controller is evaluated through a series of simulations under different velocity and different mass. The simulation results show that the controller can help vehicle against a certain range of uncertainty (speeds and loads) and get excellent robust performance.


Sign in / Sign up

Export Citation Format

Share Document