scholarly journals Control volume finite element method for a benchmark validation of a natural convection in a square cavity

2017 ◽  
Vol 139 ◽  
pp. 511-516 ◽  
Author(s):  
Hasnat Mohammed ◽  
Abdellah Belkacem ◽  
Kaid Noureddine ◽  
Benachour elhadj
Author(s):  
A.S. Dogonchi ◽  
F. Selimefendigil ◽  
D.D. Ganji

Purpose The purpose of this study is to peruse natural convection in a CuO-water nanofluid-filled complex-shaped enclosure under the influence of a uniform magnetic field by using control volume finite element method. Design/methodology/approach Governing equations formulated in dimensionless stream function, vorticity and temperature variables using the single-phase nanofluid model with the Koo–Kleinstreuer–Li correlation for the effective dynamic viscosity and the effective thermal conductivity have been solved numerically by control volume finite element method. Findings Effects of various pertinent parameters such as Rayleigh number, Hartmann number, volume fraction of nanofluid and shape factor of nanoparticle on the convective heat transfer characteristics are analysed. It was observed that local and average heat transfer rates increase for higher value of Rayleigh number and lower value of Hartmann number. Among various nanoparticle shapes, platelets were found to be best in terms of heat transfer performance. The amount of average Nusselt number reductions was found to be different when nanofluids with different solid particle volume fractions were considered due to thermal and electrical conductivity enhancement of fluid with nanoparticle addition. Originality/value A comprehensive study of the natural convection in a CuO-water nanofluid-filled complex-shaped enclosure under the influence of a uniform magnetic field by using control volume finite element method is addressed.


2003 ◽  
Vol 11 (6) ◽  
pp. 465-476 ◽  
Author(s):  
Y. S. Song ◽  
K. Chung ◽  
T. J. Kang ◽  
J. R. Youn

The complete prediction of the second order permeability tensor for a three dimensional multi-axial preform is critical if we are to model and design the manufacturing process for composites by considering resin flow through a multi-axial fiber structure. In this study, the in-plane and transverse permeabilities for a woven fabric were predicted numerically by the coupled flow model, which combines microscopic and macroscopic flows. The microscopic and macroscopic flows were calculated by using 3-D CVFEM(control volume finite element method) for micro and macro unit cells. To avoid a checkerboard pressure field and improve the efficiency of numerical computation, a new interpolation function for velocity is proposed on the basis of analytical solutions. The permeability of a plain woven fabric was measured by means of an unidirectional flow experiment and compared with the permeability calculated numerically. Reverse and simple stacking of plain woven fabrics were taken into account and the relationship between the permeability and the structures of the preform such as the fiber volume fraction and stacking order is identified. Unlike other studies, the current study was based on a more realistic three dimensional unit cell. It was observed that in-plane flow is more dominant than transverse flow within the woven perform, and the effect of the stacking order of a multi-layered preform was negligible.


Sign in / Sign up

Export Citation Format

Share Document