mesh optimization
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 32)

H-INDEX

21
(FIVE YEARS 2)

Author(s):  
Luca Vincenzo Ballestra

AbstractWe show that the performances of the finite difference method for double barrier option pricing can be strongly enhanced by applying both a repeated Richardson extrapolation technique and a mesh optimization procedure. In particular, first we construct a space mesh that is uniform and aligned with the discontinuity points of the solution being sought. This is accomplished by means of a suitable transformation of coordinates, which involves some parameters that are implicitly defined and whose existence and uniqueness is theoretically established. Then, a finite difference scheme employing repeated Richardson extrapolation in both space and time is developed. The overall approach exhibits high efficacy: barrier option prices can be computed with accuracy close to the machine precision in less than one second. The numerical simulations also reveal that the improvement over existing methods is due to the combination of the mesh optimization and the repeated Richardson extrapolation.


Author(s):  
Charles W. Jackson ◽  
Christopher J. Roy ◽  
Christopher R. Schrock

Abstract Truncation error is used to drive mesh adaptation in order to reduce the discretization error in solutions to a variety of 1D and 2D flow problems. The adaptation is performed using r-adaptation to move the mesh nodes in the domain in an attempt to reduce the truncation error since it is the local source of discretization error. Here, we present a new set of r-adaptation methods called mesh optimization along with three different ways of performing this type of adaptation. Each of these techniques uses a finite difference gradient-based local optimization technique with different sets of design variables to create a mesh that minimizes a functional based on truncation error. These new truncation error based mesh optimization techniques are compared to a more common truncation error based mesh equidistribution technique. Some observations on the performance and behavior of the different adaptation methods and best practices for their use are presented. All of the optimization methods are shown to reduce the truncation error one or two orders of magnitude and the discretization error by roughly one order of magnitude for the 1D problems tested. In two dimensions, the optimization-based adaptation methods are able to reduce the discretization error by up to a factor of seven. Mesh equidistribution achieved similar levels of improvement for much less cost compared to the mesh optimization techniques.


Sign in / Sign up

Export Citation Format

Share Document