scholarly journals On the chromatic number of two generalized Kneser graphs

2022 ◽  
Vol 101 ◽  
pp. 103474
Author(s):  
Jozefien D’haeseleer ◽  
Klaus Metsch ◽  
Daniel Werner
2010 ◽  
pp. 251-255
Author(s):  
Martin Aigner ◽  
Günter M. Ziegler

2014 ◽  
pp. 285-289
Author(s):  
Martin Aigner ◽  
Günter M. Ziegler

2011 ◽  
Vol 159 (18) ◽  
pp. 2214-2221 ◽  
Author(s):  
Ali Behtoei ◽  
Behnaz Omoomi

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Carsten Schultz

International audience Schrijver introduced the stable Kneser graph $SG_{n,k}, n \geq 1, k \geq 0$. This graph is a vertex critical graph with chromatic number $k+2$, its vertices are certain subsets of a set of cardinality $m=2n+k$. Björner and de Longueville have shown that its box complex is homotopy equivalent to a sphere, $\mathrm{Hom}(K_2,SG_{n,k}) \simeq \mathbb{S}^k$. The dihedral group $D_{2m}$ acts canonically on $SG_{n,k}$. We study the $D_{2m}$ action on $\mathrm{Hom}(K_2,SG_{n,k})$ and define a corresponding orthogonal action on $\mathbb{R}^{k+1} \supset \mathbb{S}^k$. We establish a close equivariant relationship between the graphs $SG_{n,k}$ and Borsuk graphs of the $k$-sphere and use this together with calculations in the $\mathbb{Z}_2$-cohomology ring of $D_{2m}$ to tell which stable Kneser graphs are test graphs in the sense of Babson and Kozlov. The graphs $SG_{2s,4}$ are test graphs, i.e. for every graph $H$ and $r \geq 0$ such that $\mathrm{Hom}(SG_{2s,4},H)$ is $(r-1)$-connected, the chromatic number $\chi (H)$ is at least $r+6$. On the other hand, if $k \notin \{0,1,2,4,8\}$ and $n \geq N(k)$ then $SG_{n,k}$ is not a homotopy test graph, i.e. there are a graph $G$ and an $r \geq 1$ such that $\mathrm{Hom}(SG_{n,k}, G)$ is $(r-1)$-connected and $\chi (G) < r+k+2$. The latter result also depends on a new necessary criterion for being a test graph, which involves the automorphism group of the graph. Schrijver a défini le graphe de Kneser stable $SG_{n,k}$, avec $n \geq 1$ et $k \geq 0$. Le graphe $SG_{n,k}$ est un graphe critique (par rapport aux sommets) de nombre chromatique $k+2$, dont les sommets correspondent à certains sous-ensembles d'un ensemble de cardinalité $m=2n+k$. Björner et de Longueville ont démontré que son complexe de boîtes et la sphère sont homotopiquement équivalents, c'est-à-dire $\mathrm{Hom}(K_2,SG_{n,k}) \simeq \mathbb{S}^k$. Le groupe diédral $D_{2m}$ agit sur $SG_{n,k}$ canoniquement. Nous étudions l'action de $D_{2m}$ sur $\mathrm{Hom}(K_2,SG_{n,k})$ et nous définissons une action orthogonale correspondante sur $\mathbb{R}^{k+1} \supset \mathbb{S}^k$. Par ailleurs, nous fournissons une relation équivariante étroite entre les graphes $SG_{n,k}$ et les graphes de Borsuk de la sphère de dimension $k$. Utilisant cette relation et certains calculs dans l'anneau de cohomologie de $D_{2m}$ sur $\mathbb{Z}_2$, nous décrivons quels graphes de Kneser stables sont des graphes de tests selon la notion de Babson et Kozlov. Les graphes $SG_{2s,4}$ sont des graphes de tests, c'est-à-dire que pour tout $H$ et $r \geq 0$ tels que $\mathrm{Hom}(SG_{2s,4},H)$ est $(r-1)$-connexe, le nombre chromatique $\chi (H)$ est au moins $r+6$. D'autre part, si $k \notin \{0,1,2,4,8\}$ et $n \geq N(k)$, alors $SG_{n,k}$ n'est pas un graphe de tests d'homologie: il existe un graphe $G$ et un entier $r \geq 1$ tels que $\mathrm{Hom}(SG_{n,k}, G)$ est $(r-1)$-connexe et $\chi (G) < r+k+2$. Ce dernier résultat dépend d'un nouveau critère nécessaire pour être un graphe de tests, qui implique le groupe d'automorphismes du graphe.


10.37236/3066 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhongyuan Che ◽  
Karen L. Collins

A labeling $f: V(G) \rightarrow \{1, 2, \ldots, d\}$ of the vertex set of a graph $G$ is said to be proper $d$-distinguishing if it is a proper coloring of $G$ and any nontrivial automorphism of $G$ maps at least one vertex to a vertex with a different label. The distinguishing chromatic number of $G$, denoted by $\chi_D(G)$, is the minimum $d$ such that $G$ has a proper $d$-distinguishing labeling. Let $\chi(G)$ be the chromatic number of $G$ and $D(G)$ be the distinguishing number of $G$. Clearly, $\chi_D(G) \ge \chi(G)$ and $\chi_D(G) \ge D(G)$. Collins, Hovey and Trenk have given a tight upper bound on $\chi_D(G)-\chi(G)$ in terms of the order of the automorphism group of $G$, improved when the automorphism group of $G$ is a finite abelian group. The Kneser graph $K(n,r)$ is a graph whose vertices are the $r$-subsets of an $n$ element set, and two vertices of $K(n,r)$ are adjacent if their corresponding two $r$-subsets are disjoint. In this paper, we provide a class of graphs $G$, namely Kneser graphs $K(n,r)$, whose automorphism group is the symmetric group, $S_n$, such that $\chi_D(G) - \chi(G) \le 1$. In particular, we prove that $\chi_D(K(n,2))=\chi(K(n,2))+1$ for $n\ge 5$. In addition, we show that $\chi_D(K(n,r))=\chi(K(n,r))$ for $n \ge 2r+1$ and $r\ge 3$.


2018 ◽  
pp. 301-305
Author(s):  
Martin Aigner ◽  
Günter M. Ziegler

2003 ◽  
Vol 88 (2) ◽  
pp. 299-303 ◽  
Author(s):  
Hossein Hajiabolhassan ◽  
Xuding Zhu

2020 ◽  
Vol 343 (2) ◽  
pp. 111682
Author(s):  
Amir Jafari ◽  
Mohammad Javad Moghaddamzadeh

2019 ◽  
Vol 29 (1) ◽  
pp. 1-21
Author(s):  
Meysam Alishahi ◽  
Hajiabolhassan Hossein

AbstractIn an earlier paper, the present authors (2015) introduced the altermatic number of graphs and used Tucker’s lemma, an equivalent combinatorial version of the Borsuk–Ulam theorem, to prove that the altermatic number is a lower bound for chromatic number. A matching Kneser graph is a graph whose vertex set consists of all matchings of a specified size in a host graph and two vertices are adjacent if their corresponding matchings are edge-disjoint. Some well-known families of graphs such as Kneser graphs, Schrijver graphs and permutation graphs can be represented by matching Kneser graphs. In this paper, unifying and generalizing some earlier works by Lovász (1978) and Schrijver (1978), we determine the chromatic number of a large family of matching Kneser graphs by specifying their altermatic number. In particular, we determine the chromatic number of these matching Kneser graphs in terms of the generalized Turán number of matchings.


Sign in / Sign up

Export Citation Format

Share Document