scholarly journals OP11 Prognostic significance of F-18 FDG-PET/CT images in curatively resected gastric cancer

2011 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
J.Y. Kim ◽  
Y.R. Do ◽  
K.U. Park ◽  
H.S. Song ◽  
K.S. Won ◽  
...  
2013 ◽  
Vol 54 (10) ◽  
pp. 1703-1709 ◽  
Author(s):  
N.-M. Cheng ◽  
Y.-H. Dean Fang ◽  
J. Tung-Chieh Chang ◽  
C.-G. Huang ◽  
D.-L. Tsan ◽  
...  

Author(s):  
Jieling Zheng ◽  
Huaning Chen ◽  
Kaixian Lin ◽  
Shaobo Yao ◽  
Weibing Miao
Keyword(s):  
Fdg Pet ◽  
Pet Ct ◽  
18F Fdg ◽  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Amy J. Weisman ◽  
Jihyun Kim ◽  
Inki Lee ◽  
Kathleen M. McCarten ◽  
Sandy Kessel ◽  
...  

Abstract Purpose For pediatric lymphoma, quantitative FDG PET/CT imaging features such as metabolic tumor volume (MTV) are important for prognosis and risk stratification strategies. However, feature extraction is difficult and time-consuming in cases of high disease burden. The purpose of this study was to fully automate the measurement of PET imaging features in PET/CT images of pediatric lymphoma. Methods 18F-FDG PET/CT baseline images of 100 pediatric Hodgkin lymphoma patients were retrospectively analyzed. Two nuclear medicine physicians identified and segmented FDG avid disease using PET thresholding methods. Both PET and CT images were used as inputs to a three-dimensional patch-based, multi-resolution pathway convolutional neural network architecture, DeepMedic. The model was trained to replicate physician segmentations using an ensemble of three networks trained with 5-fold cross-validation. The maximum SUV (SUVmax), MTV, total lesion glycolysis (TLG), surface-area-to-volume ratio (SA/MTV), and a measure of disease spread (Dmaxpatient) were extracted from the model output. Pearson’s correlation coefficient and relative percent differences were calculated between automated and physician-extracted features. Results Median Dice similarity coefficient of patient contours between automated and physician contours was 0.86 (IQR 0.78–0.91). Automated SUVmax values matched exactly the physician determined values in 81/100 cases, with Pearson’s correlation coefficient (R) of 0.95. Automated MTV was strongly correlated with physician MTV (R = 0.88), though it was slightly underestimated with a median (IQR) relative difference of − 4.3% (− 10.0–5.7%). Agreement of TLG was excellent (R = 0.94), with median (IQR) relative difference of − 0.4% (− 5.2–7.0%). Median relative percent differences were 6.8% (R = 0.91; IQR 1.6–4.3%) for SA/MTV, and 4.5% (R = 0.51; IQR − 7.5–40.9%) for Dmaxpatient, which was the most difficult feature to quantify automatically. Conclusions An automated method using an ensemble of multi-resolution pathway 3D CNNs was able to quantify PET imaging features of lymphoma on baseline FDG PET/CT images with excellent agreement to reference physician PET segmentation. Automated methods with faster throughput for PET quantitation, such as MTV and TLG, show promise in more accessible clinical and research applications.


2012 ◽  
Vol 46 (4) ◽  
pp. 261-268 ◽  
Author(s):  
Sun Young Oh ◽  
Gi Jeong Cheon ◽  
Young Chul Kim ◽  
Eugene Jeong ◽  
Seungeun Kim ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Margarita Kirienko ◽  
Martina Sollini ◽  
Giorgia Silvestri ◽  
Serena Mognetti ◽  
Emanuele Voulaz ◽  
...  

Aim. To develop an algorithm, based on convolutional neural network (CNN), for the classification of lung cancer lesions as T1-T2 or T3-T4 on staging fluorodeoxyglucose positron emission tomography (FDG-PET)/CT images. Methods. We retrospectively selected a cohort of 472 patients (divided in the training, validation, and test sets) submitted to staging FDG-PET/CT within 60 days before biopsy or surgery. TNM system seventh edition was used as reference. Postprocessing was performed to generate an adequate dataset. The input of CNNs was a bounding box on both PET and CT images, cropped around the lesion centre. The results were classified as Correct (concordance between reference and prediction) and Incorrect (discordance between reference and prediction). Accuracy (Correct/[Correct + Incorrect]), recall (Correctly predicted T3-T4/[all T3-T4]), and specificity (Correctly predicted T1-T2/[all T1-T2]), as commonly defined in deep learning models, were used to evaluate CNN performance. The area under the curve (AUC) was calculated for the final model. Results. The algorithm, composed of two networks (a “feature extractor” and a “classifier”), developed and tested achieved an accuracy, recall, specificity, and AUC of 87%, 69%, 69%, and 0.83; 86%, 77%, 70%, and 0.73; and 90%, 47%, 67%, and 0.68 in the training, validation, and test sets, respectively. Conclusion. We obtained proof of concept that CNNs can be used as a tool to assist in the staging of patients affected by lung cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qiufang Liu ◽  
Jiaru Li ◽  
Bowen Xin ◽  
Yuyun Sun ◽  
Dagan Feng ◽  
...  

ObjectivesThe accurate assessment of lymph node metastases (LNMs) and the preoperative nodal (N) stage are critical for the precise treatment of patients with gastric cancer (GC). The diagnostic performance, however, of current imaging procedures used for this assessment is sub-optimal. Our aim was to investigate the value of preoperative 18F-FDG PET/CT radiomic features to predict LNMs and the N stage.MethodsWe retrospectively collected clinical and 18F-FDG PET/CT imaging data of 185 patients with GC who underwent total or partial radical gastrectomy. Patients were allocated to training and validation sets using the stratified method at a fixed ratio (8:2). There were 2,100 radiomic features extracted from the 18F-FDG PET/CT scans. After selecting radiomic features by the random forest, relevancy-based, and sequential forward selection methods, the BalancedBagging ensemble classifier was established for the preoperative prediction of LNMs, and the OneVsRest classifier for the N stage. The performance of the models was primarily evaluated by the AUC and accuracy, and validated by the independent validation methods. Analysis of the feature importance and the correlation were also conducted. We also compared the predictive performance of our radiomic models to that with the contrast-enhanced CT (CECT) and 18F-FDG PET/CT.ResultsThere were 185 patients—127 men, 58 women, with the median age of 62, and an age range of 22–86 years. One CT feature and one PET feature were selected to predict LNMs and achieved the best performance (AUC: 82.2%, accuracy: 85.2%). This radiomic model also detected some LNMs that were missed in CECT (19.6%) and 18F-FDG PET/CT (35.7%). For predicting the N stage, four CT features and one PET feature were selected (AUC: 73.7%, accuracy: 62.3%). Of note, a proportion of patients in the validation set whose LNMs were incorrectly staged by CECT (57.4%) and 18F-FDG PET/CT (55%) were diagnosed correctly by our radiomic model.ConclusionWe developed and validated two machine learning models based on the preoperative 18F-FDG PET/CT images that have a predictive value for LNMs and the N stage in GC. These predictive models show a promise to offer a potentially useful adjunct to current staging approaches for patients with GC.


2020 ◽  
Author(s):  
Romain Mallet ◽  
Romain Modzelewski ◽  
Justine Lequesne ◽  
Pierre Decazes ◽  
Hugues Auvray ◽  
...  

Abstract Background Sarcopenia is defined by a loss of skeletal muscle mass with or without loss of fat mass. Sarcopenia has been associated to reduced tolerance to treatment and worse prognosis in cancer patients, including patients undergoing surgery for limited oesophageal cancer. Concomitant chemo-radiotherapy is the standard treatment for locally-advanced tumour, not accessible to surgical resection. Using automated delineation of the skeletal muscle, we have investigated the prognostic value of sarcopenia in locally advanced oesophageal cancer patients treated by curative-intent chemo-radiotherapy. Methods The clinical, nutritional, anthropometric, and functional-imaging ( 18 FDG-PET/CT) data were collected in 97 patients treated between 2006 and 2012 in our institution (RTEP3). The skeletal muscle area was automatically delineated on cross-sectional CT images acquired at the 3 rd . lumbar vertebra level and divided by the patient’s squared height (SML3/h 2 ) to obtain the Skeletal Muscle Index (SMI). The primary endpoint was overall survival probability. Results Seventy-six deaths were reported. The median survival time was 27 [95% Confidence Interval 23 – 40] months for the whole population. Univariate analyses (Cox Proportional Hazard Model) showed decreased survival probabilities in patients with reduced SMI, WHO >0, Body Mass Index ≤21, and Nutritional Risk Index ≤97.5. Multivariate analyses showed that reduced SMI (Hazard Ratio 0.948 [0.919 - 0.978] and male sex (2.977 [1.427 - 6.213] were significantly associated to decreased survival. Using Receiver Operating Characteristics curves, the Area Under the Curve (AUC) was 0.73 in males (p=0.0002], the optimal threshold being 51.5 cm 2 /m 2 . In women, the AUC was 0.65 (p=0.19). Conclusion Sarcopenia is a powerful independent prognostic factor, associated with a rise of the overall mortality in patients treated exclusively by radiochemotherapy for a locally advanced oesophageal cancer. L3 CT images are easily gathered from 18 FDG-PET/CT acquisitions


2014 ◽  
Vol 23 (3) ◽  
pp. 76-83 ◽  
Author(s):  
Hakan Cayvarlı ◽  
Recep Bekiş ◽  
Tülay Akman ◽  
Deniz Altun

Sign in / Sign up

Export Citation Format

Share Document