scholarly journals Flavone-stilbene hybrids: Synthesis and evaluation as potential antimalarial agents

Author(s):  
Bishnu Prasad Raiguru ◽  
Seetaram Mohapatra ◽  
Sabita Nayak ◽  
Dinkar Sahal ◽  
Mamta Yadav ◽  
...  
Keyword(s):  
2019 ◽  
Vol 15 (6) ◽  
pp. 685-692 ◽  
Author(s):  
Tommy F. Mabasa ◽  
Babatunde Awe ◽  
Dustin Laming ◽  
Henok H. Kinfe

Background:Malaria, caused by the deadly Plasmodium falciparum strain, claims the lives of millions of people annually. The emergence of drug-resistant strains of P. falciparum to the artemisinin-based combination therapy (ACT), the last line of defense against malaria, is worrisome and urges for the development of new chemo-types with a new mode of action. In the search of new antimalarial agents, hybrids of triazoles and other known antimalarial drugs have been reported to possess better activity than either of the parent compounds administered individually. Despite their better activity, no hybrid antimalarial drugs have been developed so far.Objective:In the hope of developing new antimalarial prototypes, we propose the design, synthesis and antimalarial evaluation of novel sulfoximine-triazole hybrids owing to their interesting biological and physiological properties.Methods:The sulfoximine part of the hybrid will be synthesized via imidation of the corresponding sulfoxide. Propargylation of the NH moiety of the sulfoximine followed by copper-catalyzed click chemistry with benzyl azide was envisaged to provide the target sulfoximine-triazole hybrids.Results:Five novel sulfoximine-triazole hybrids possessing various substituents on the sulfoximine moiety have been successfully synthesized and evaluated for their antiplasmodial and cytotoxicity activities. The results revealed that the co-presence of the sulfoximine and triazole moieties along with a lipophilic alkyl substituent on the sulfur atom impart significant activity.Conclusion:Sulfoximine-triazole hybrids could be used as a prototype for the synthesis of new derivatives with better antiplasmodial activities.


2020 ◽  
Vol 16 ◽  
Author(s):  
Haicheng Liu ◽  
Yushi Futamura ◽  
Honghai Wu ◽  
Aki Ishiyama ◽  
Taotao Zhang ◽  
...  

Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3-cinnamamido-N-substituted benzamides. Method: In this study, a screening of our compound library was carried out against the multidrug-sensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 µM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 µM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, phenotypic screen of our compound library resulted in the first report of 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against P. falciparum 3D7 strain with IC50 values around 0.1 µM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.


2014 ◽  
Vol 77 ◽  
pp. 280-287 ◽  
Author(s):  
A. Chandra Shekhar ◽  
P. Shanthan Rao ◽  
B. Narsaiah ◽  
Aparna Devi Allanki ◽  
Puran Singh Sijwali

Author(s):  
Donelly A. van Schalkwyk ◽  
Robert W. Moon ◽  
Maëlle Duffey ◽  
Didier Leroy ◽  
Colin J. Sutherland

2011 ◽  
Vol 19 (4) ◽  
pp. 1541-1549 ◽  
Author(s):  
Liang Zhang ◽  
Ramadas Sathunuru ◽  
ThuLan Luong ◽  
Victor Melendez ◽  
Michael P. Kozar ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document