scholarly journals Ex vivo susceptibility to new antimalarial agents differs among human-infecting Plasmodium species

Author(s):  
Donelly A. van Schalkwyk ◽  
Robert W. Moon ◽  
Maëlle Duffey ◽  
Didier Leroy ◽  
Colin J. Sutherland
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shafia Khairani ◽  
Nisa Fauziah ◽  
Hesti Lina Wiraswati ◽  
Ramdan Panigoro ◽  
Endang Yuni Setyowati ◽  
...  

Malaria remains a significant global health problem, but the development of effective antimalarial drugs is challenging due to the parasite’s complex life cycle and lack of knowledge about the critical specific stages. Medicinal plants have been investigated as adjuvant therapy for malaria, so this systematic review summarizes 46 primary articles published until December 2020 that discuss curcumin and piperine as antimalarial agents. The selected articles discussed their antioxidant, anti-inflammatory, and antiapoptosis properties, as well as their mechanism of action against Plasmodium species. Curcumin is a potent antioxidant, damages parasite DNA, and may promote an immune response against Plasmodium by increasing reactive oxygen species (ROS), while piperine is also a potent antioxidant that potentiates the effects of curcumin. Hence, combining these compounds is likely to have the same effect as chloroquine, that is, attenuate and restrict parasite development, thereby reducing parasitemia and increasing host survival. This systematic review presents new information regarding the development of a curcumin-piperine combination for future malaria therapy.


Author(s):  
Syeda Sana ◽  
Mohsina Abed

Tafenoquine is an analogue of primaquine with an improved therapeutic and safety profile. It has a long half-life and activity against liver-stage malaria parasites, so may be useful for chemoprophylaxis. Antimalarial agents are drugs used for the treatment or prophylaxis of malaria. Malaria is caused by four species of Plasmodium, such as Plasmodium falciparum, P. malariae, P. ovale, and P. vivax. Arakoda contains tafenoquine succinate, an antimalarial agent for oral administration. The molecular formula of tafenoquine succinate is C24H28F3N3O3∙C4H6O4 and its molecular weight is 581.6 as the succinate salt. It is given in prophylaxis of malaria patient aged 18 years older. Tafenoquine is active against pre-erythrocytic (liver) and erythrocytic (asexual) forms as well as gametocytes of Plasmodium species. G6PD test is performed before giving the drug. Analytical studies were on NMR, IR, MS, HPLC, Flourimetry analysis. In vitro studies have shown that tafenoquine presents an average 50% inhibitory concentration of 0.436mcg against blood stages of seven strains of P. falciparum. The long‐acting 8‐aminoquinoline tafenoquine (TQ) co-administered with chloroquine (CQ) may radically cure Plasmodium vivax malaria. Coadministration therapy was evaluated for a pharmacokinetic interaction and for pharmacodynamic, safety and tolerability characteristics. Volume of distribution. The activation of tafenoquine needs the activity of CYP 2D6 liver microsomal enzyme. Routes of elimination are through feces.


Author(s):  
U. Frevert ◽  
S. Sinnis ◽  
C. Cerami ◽  
V. Nussenzweig

Malaria sporozoites, which invade hepatocytes within minutes after transmission by an infected mosquito, are covered with the circumsporozoite (CS) protein, which in all Plasmodium species contains the conserved region II-plus. This region is also found as a cell-adhesive motif in a variety of host proteins like thrombospondin, properdin and the terminal complement components.The CS protein with its region II-plus specifically binds to heparan sulfate proteoglycans (HSPG) on the basolateral surface of hepatocytes in the space of Disse (FIG. 1), to certain basolateral cell membranes and basement membranes of the kidney (FIG. 2) as well as to heparin in the granules of connective tissue mast cells. The distribution of the HSPG receptors for the CS protein was examined by incubation of Lowicryl K4M or LR White sections of liver and kidney tissue with the recombinant CS ligand, whose binding sites were detected with a monoclonal anti-CS antibody and protein A gold.


Author(s):  
E.J. Prendiville ◽  
S. Laliberté Verdon ◽  
K. E. Gould ◽  
K. Ramberg ◽  
R. J. Connolly ◽  
...  

Endothelial cell (EC) seeding is postulated as a mechanism of improving patency in small caliber vascular grafts. However the majority of seeded EC are lost within 24 hours of restoration of blood flow in previous canine studies . We postulate that the cells have insufficient time to fully develop their attachment to the graft surface prior to exposure to hemodynamic stress. We allowed EC to incubate on fibronectin-coated ePTFE grafts for four different time periods after seeding and measured EC retention after perfusion in a canine ex vivo shunt circuit.Autologous canine EC, were enzymatically harvested, grown to confluence, and labeled with 30 μCi 111 Indium-oxine/80 cm 2 flask. Four groups of 5 cm x 4 mm ID ePTFE vascular prostheses were coated with 1.5 μg/cm.2 human fibronectin, and seeded with 1.5 x 105 EC/ cm.2. After seeding grafts in Group 1 were incubated in complete growth medium for 90 minutes, Group 2 were incubated for 24 hours, Group 3 for 72 hours and Group 4 for 6 days. Grafts were then placed in the canine ex vivo circuit, constructed between femoral artery and vein, and subjected to blood flow of 75 ml per minute for 6 hours. Continuous counting of γ-activity was made possible by placing the seeded graft inside the γ-counter detection crystal for the duration of perfusion. EC retention data after 30 minutes, 2 hours and 6 hours of flow are shown in the table.


2019 ◽  
Vol 133 (22) ◽  
pp. 2283-2299
Author(s):  
Apabrita Ayan Das ◽  
Devasmita Chakravarty ◽  
Debmalya Bhunia ◽  
Surajit Ghosh ◽  
Prakash C. Mandal ◽  
...  

Abstract The role of inflammation in all phases of atherosclerotic process is well established and soluble TREM-like transcript 1 (sTLT1) is reported to be associated with chronic inflammation. Yet, no information is available about the involvement of sTLT1 in atherosclerotic cardiovascular disease. Present study was undertaken to determine the pathophysiological significance of sTLT1 in atherosclerosis by employing an observational study on human subjects (n=117) followed by experiments in human macrophages and atherosclerotic apolipoprotein E (apoE)−/− mice. Plasma level of sTLT1 was found to be significantly (P<0.05) higher in clinical (2342 ± 184 pg/ml) and subclinical cases (1773 ± 118 pg/ml) than healthy controls (461 ± 57 pg/ml). Moreover, statistical analyses further indicated that sTLT1 was not only associated with common risk factors for Coronary Artery Disease (CAD) in both clinical and subclinical groups but also strongly correlated with disease severity. Ex vivo studies on macrophages showed that sTLT1 interacts with Fcɣ receptor I (FcɣRI) to activate spleen tyrosine kinase (SYK)-mediated downstream MAP kinase signalling cascade to activate nuclear factor-κ B (NF-kB). Activation of NF-kB induces secretion of tumour necrosis factor-α (TNF-α) from macrophage cells that plays pivotal role in governing the persistence of chronic inflammation. Atherosclerotic apoE−/− mice also showed high levels of sTLT1 and TNF-α in nearly occluded aortic stage indicating the contribution of sTLT1 in inflammation. Our results clearly demonstrate that sTLT1 is clinically related to the risk factors of CAD. We also showed that binding of sTLT1 with macrophage membrane receptor, FcɣR1 initiates inflammatory signals in macrophages suggesting its critical role in thrombus development and atherosclerosis.


2020 ◽  
Vol 63 (9) ◽  
pp. 2921-2929
Author(s):  
Alan H. Shikani ◽  
Elamin M. Elamin ◽  
Andrew C. Miller

Purpose Tracheostomy patients face many adversities including loss of phonation and essential airway functions including air filtering, warming, and humidification. Heat and moisture exchangers (HMEs) facilitate humidification and filtering of inspired air. The Shikani HME (S-HME) is a novel turbulent airflow HME that may be used in-line with the Shikani Speaking Valve (SSV), allowing for uniquely preserved phonation during humidification. The aims of this study were to (a) compare the airflow resistance ( R airflow ) and humidification efficiency of the S-HME and the Mallinckrodt Tracheolife II tracheostomy HME (M-HME) when dry (time zero) and wet (after 24 hr) and (b) determine if in-line application of the S-HME with a tracheostomy speaking valve significantly increases R airflow over a tracheostomy speaking valve alone (whether SSV or Passy Muir Valve [PMV]). Method A prospective observational ex vivo study was conducted using a pneumotachometer lung simulation unit to measure airflow ( Q ) amplitude and R airflow , as indicated by a pressure drop ( P Drop ) across the device (S-HME, M-HME, SSV + S-HME, and PMV). Additionally, P Drop was studied for the S-HME and M-HME when dry at time zero (T 0 ) and after 24 hr of moisture testing (T 24 ) at Q of 0.5, 1, and 1.5 L/s. Results R airflow was significantly less for the S-HME than M-HME (T 0 and T 24 ). R airflow of the SSV + S-HME in series did not significant increase R airflow over the SSV or PMV alone. Moisture loss efficiency trended toward greater efficiency for the S-HME; however, the difference was not statistically significant. Conclusions The turbulent flow S-HME provides heat and moisture exchange with similar or greater efficacy than the widely used laminar airflow M-HME, but with significantly lower resistance. The S-HME also allows the innovative advantage of in-line use with the SSV, hence allowing concurrent humidification and phonation during application, without having to manipulate either device.


2007 ◽  
Vol 177 (4S) ◽  
pp. 614-614 ◽  
Author(s):  
Gunnar Wendt-Nordahl ◽  
Stefanie Huckele ◽  
Patrick Honeck ◽  
Peter Aiken ◽  
Thomas Knoll ◽  
...  

2003 ◽  
Vol 2 (1) ◽  
pp. 12
Author(s):  
M KHAIRALLAH ◽  
B BOUCHARD ◽  
J MCDUFF ◽  
F LABARTHE ◽  
G DANIALOU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document