Design and synthesis of some new thiophene, thienopyrimidine and thienothiadiazine derivatives of antipyrine as potential antimicrobial agents

2011 ◽  
Vol 46 (9) ◽  
pp. 4566-4572 ◽  
Author(s):  
Hala M. Aly ◽  
Nashwa M. Saleh ◽  
Heba A. Elhady
2009 ◽  
Vol 17 (2) ◽  
pp. 882-895 ◽  
Author(s):  
Sherif A.F. Rostom ◽  
Ibrahim M. El-Ashmawy ◽  
Heba A. Abd El Razik ◽  
Mona H. Badr ◽  
Hayam M.A. Ashour

2020 ◽  
Vol 11 (3) ◽  
pp. 10595-10606

This investigation deals with the design and synthesis of new derivatives of pyrrole consisting of modifying atoms of chlorine, amide, and 1,3-oxazole fragments. These compounds can be interesting in the context of research of new antimicrobial agents. Ethyl 5-chloro-4-formyl-1H-pyrrole-3-carboxylates were used as a key substrate for further transformation into target compounds. This process was realized as a direct transformation of an aldehyde fragment into a 1,3-oxazole cycle by van Leusen’s reaction followed by hydrolysis of an ester group, which finally converted a reactant into the corresponding pyrrole-3-carboxylic acid. This acid has been found to be an efficient construction block for the further development of antimicrobial agents. The preparative potential of these compounds has been verified by way of their transformation into a series of carbamides through consecutive reactions with thionyl chloride and alkyl-, aryl, and heterylamines under mild reaction conditions. According to bio screening results, the following two compounds have been chosen as those exhibiting a high anti-staphylococcus activity: 1-butyl-5-chloro-2-methyl-4-(1,3-oxazol-5-yl)-N-[(1,3-thiazol-2-yl]-1H-pyrrole-3-carboxamide and 1-butyl-5-chloro-N-[(3-dimethylaminosulfonyl)phenyl]-2-methyl-4-(1,3-oxazol-5-yl)-1H-pyrrole-3-carboxamide (МІС=7.8 µg/ml), while another one – 5-сhloro-N-(4-chlorophenyl)-4-(1,3-oxazol-5-yl)-2-phenyl-1-propyl-1H-pyrrole-3-carboxamide was selected as a compound exhibiting high antifungal activity (МІС=7.8 µg/ml) against the reference strains Candida albiсans АТСС 885/653 and Aspergillus niger K9.


Author(s):  
Asghar Davood ◽  
Aneseh Rahimi ◽  
Maryam Iman ◽  
Parisa Azerang ◽  
Soroush Sardari ◽  
...  

Objective(s): Azole antifungal agents, which are widely used as antifungal antibiotics, inhibit cytochrome P450 sterol 14α-demethylase (CYP51). Nearly all azole antifungal agents are N-substituted azoles. In addition, an azolylphenalkyl pharmacophore is uniquely shared by all azole antifungals. Due to importance of nitrogen atom of azoles (N-3 of imidazole and N-4 of triazole) in coordination with heme in the binding site of the enzyme, here a group of N- un-substituted azoles in which both of nitrogen is un-substituted was reported. Materials and Methods: Designed compounds were synthesized by reaction of imidazole-4-carboxaldehyde with appropriate arylamines and subsequently reduced to desired amine derivatives. Antifungal activity against Candida albicans and Saccharomyces cervisiae were done using a broth micro-dilution assay. Docking studies were done using AutoDock. Results: Antimicrobial evaluation revealed that some of these compounds exhibited moderate antimicrobial activities against tested pathogenic fungi, wherein compound 3, 7 and 8 were potent. Docking studies propose that all of the prepared azoles interacted with 14α-DM, wherein azole-heme coordination play main role in drug-receptor interaction. Conclusion: Our results offer some useful references in order to molecular design performance or modification of this series of compounds as a lead compound to discover new and potent antimicrobial agents.


2021 ◽  
pp. 105065
Author(s):  
Yu-Yuan Chen ◽  
Yin-Peng Bai ◽  
Bin Li ◽  
Xiao-Bo Zhao ◽  
Cheng-Jie Yang ◽  
...  

2021 ◽  
Vol 19 (6) ◽  
pp. 1365-1377
Author(s):  
Arun K. Ghosh ◽  
Srinivasa Rao Allu ◽  
Guddeti Chandrashekar Reddy ◽  
Adriana Gamboa Lopez ◽  
Patricia Mendez ◽  
...  

Enantioselective syntheses of C-6 modified derivatives of herboxidiene and their biological evaluation in splicing inhibitory assay.


2010 ◽  
Vol 63 (22) ◽  
pp. 3981-3998 ◽  
Author(s):  
Zahid H. Chohan ◽  
Sajjad H. Sumrra ◽  
Moulay Hfid Youssoufi ◽  
Taibi Ben Hadda

Sign in / Sign up

Export Citation Format

Share Document