antifungal antibiotics
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 10)

H-INDEX

29
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Rajan Rolta ◽  
Shivani Shukla ◽  
Anjali Kashyap ◽  
Vikas Kumar ◽  
Anuradha Sourirajan ◽  
...  

Abstract Bistorta macrophylla (D. Don) Sojak. is a medicinal plant of high altitude and so far, not been scientifically explored? Since prehistoric times, B. macrophylla has been used to cure stomach pain, pyretic fever, flu, lungs infections, diarrhea, vomiting. The present research was aimed to examine the phytochemicals, antifungal, and synergistic potential of methanolic extracts of B. macrophylla. Methanolic extract of B. macrophylla was found to have high phenolic (191.18 ± 29.18 mg g−1 GAE) and flavonoid (26.71 ± 3.21 mg g−1 RE) content. Methanolic extract also demonstrate strong antifungal action with diameter of zone of inhibition of 17.5±0.5 mm (fungicidal) against both the strains of C. albicans (MTCC277 and ATCC90028). The minimal inhibitory concentration (MIC) of methanolic extract was found to be 62.5 µg ml−1 against C. albicans (MTCC277 and ATCC90028). In addition, the combination of methanolic extract of B. macrophylla with antifungal antibiotics (fluconazole and amphotericin B) showed synergistic interaction with MIC reduction from 4-128 folds against both candida strains. GC-MS analysis of methanolic extract revealed the presence of 15 major phytocompounds with area more than 1%. Molecular docking showed that sucrose and 9,9-Dimethoxybicyclo [ 3.3.1] nona-2,4-dione has highest binding energy of -6.3 and -5.1 KJ/mol against Cytochrome P450 14 alpha-sterol Demethylase (PDB ID: 1EA1) protein respectively. Combination of methanolic extract of B. macrophylla with antifungal antibiotics (fluconazole, amphotericin B) can be used to treat drug-resistant candida.


2021 ◽  
Vol 11 (1) ◽  
pp. 10-21
Author(s):  
Deepika Tiwari ◽  
Shobha Shouche ◽  
Praveesh Bhati ◽  
Preeti Das

Actinomycetes are known as filamentous, Gram positive bacteria. They form the majority of the microbial load in various niches; soils, composts, etc. The study aimed to evaluate the method of isolating slow growing actinomycetes from four different sources: garden soil, cow dung manure compost, floral waste compost, and floral waste vermicompost. In this study, an integrated method consisting of physical and chemical pretreatment of the sample and the use of selective media was used to isolate actinomycetes. Physical treatment includes air drying, sun drying, dry heating in an oven, and moist heat treatment, whereas chemical treatment includes enrichment of the sample with CaCO3 followed by plating on actinomycetes-specific media with the incorporation of antibacterial and antifungal antibiotics. The actinomycetes count on the plate was reported in CFU/gm of dry wt. Morphological and microscopic characteristics of purified isolates were noted. The results were compared, and it was found that the pretreatment method of a particular sample depends on the choice of substrate. Overall, physical treatment followed by chemical enrichment showed relatively higher counts on the plate and better results. Here we also found the dominance of fluorescent Pseudomonas sp. in case samples from vermicompost. The study can be of great importance in isolating novel and rare genera of actinomycetes. These methods can help speed up the isolation and screening of novel actinomycetes which will ultimately be important for the discovery of antibiotics and other industrially vital bioactive compounds.


2021 ◽  
Vol 22 (18) ◽  
pp. 10108
Author(s):  
Julia Borzyszkowska-Bukowska ◽  
Justyna Górska ◽  
Paweł Szczeblewski ◽  
Tomasz Laskowski ◽  
Iwona Gabriel ◽  
...  

Three aromatic heptaene macrolide antifungal antibiotics, Candicidin D, Partricin A (Gedamycin) and Partricin B (Vacidin) were subjected to controlled cis-trans ® all trans photochemical isomerization. The obtained all-trans isomers demonstrated substantially improved in vitro selective toxicity in the Candida albicans cells: human erythrocytes model. This effect was mainly due to the diminished hemotoxicity. The molecular modeling studies on interactions between original antibiotics and their photoisomers with ergosterol and cholesterol revealed some difference in free energy profiles of formation of binary antibiotic/sterol complexes in respective membrane environments. Moreover, different geometries of heptaene: sterol complexes and variations in polyene macrolide molecule alignment in cholesterol-and ergosterol-containing membranes were found. None of these effects are of the crucial importance for the observed improvement of selective toxicity of aromatic heptaene antifungals but each seems to provide a partial contribution.


2021 ◽  
Author(s):  
Shanshan Sun ◽  
Li Sun ◽  
Kai Wang ◽  
Shanshan Qiao ◽  
Xinyue Zhao ◽  
...  

Abstract Gut fungi is known to play many important roles in human health regulations. Herein, we investigated the anti-obesity efficacy of the antifungal antibiotics (amphotericin B, fluconazole and 5-fluorocytosine) in the high fat diet-fed (HFD) mice. Supplementation of amphotericin B or fluconazole in water effectively inhibited obesity and its related disorders, whereas 5-fluorocytosine exhibited little effects. The gut fungus Candida parapsilosis was identified as a key commensal fungus related to the diet-induced obesity by the culture-dependent method and the inoculation assay with C. parapsilosis in the fungi-free mice. In addition, the increase of free fatty acids in the gut due to the production of fungal lipases from C. parapsilosis was confirmed as one mechanism by which C. parapsilosis promotes obesity. The current study demonstrates the gut C. parapsilosis as a causal fungus for the development of diet-induced obesity in mice and highlights the therapeutic strategy targeting the gut fungi.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252113
Author(s):  
Heidi Schalchli ◽  
Emilio Hormazábal ◽  
Álvaro Astudillo ◽  
Gabriela Briceño ◽  
Olga Rubilar ◽  
...  

Potato waste was processed and used as a sole substrate for simultaneously producing antifungals and biopigments using Streptomyces spp. Out of three different Streptomyces isolates, strain SO6 stood out due to its ability to produce antifungals against economically important fungal phytopathogens and intracellular biopigments using potato waste powders without additional nutrients. This strain also showed the potential to secrete a broad range of enzymes for fermentation of eight sugars that could be involved in potato waste bioconversion. The results of the fermentation assay indicated that Streptomyces sp. strain SO6 degrades potato wastes during submerged fermentation, diminishing total dry weight and increasing reducing sugars from 0.3 to 3.6 mg·mL−1 and total proteins from 70.6 to 187.7 μg·mL−1. The results showed that Streptomyces strain SO6 was able to convert the potato waste into 0.96 mg·g−1 of diffusible antifungals and 1.75 mg·g−1 of reddish-purple biopigments. On the contrary, an absence of pigment production was observed during the fermentation of the commercial medium used as reference. According to our results, replacement of commercial culture media with available low-cost agroindustrial wastes for producing bioactive chemicals is a real opportunity to enhance the Streptomyces pigment production and antibiotic sustainability with cost-competitiveness. To our knowledge, this is the first report on the simultaneous production of biopigments and diffusible antifungal antibiotics produced by Streptomyces spp. using potato solid waste as the sole nutrient source.


Author(s):  
Eldar E. Musayev ◽  
◽  
Tamara B. Chistyakova ◽  
Valery V. Belakhov ◽  
◽  
...  

In this work we present a software system that enables antifungal antibiotic drug candidate toxicity and likelihood of drug binding prediction. The system is composed of a number of machine learning models and deterministic algorithms. Its implementation utilizes modern software development practices including a client-server architecture with a thin web-client. Testing showed the models’ accuracy and viability for predicting antifungal antibiotics’ properties.


2020 ◽  
Vol 8 (01) ◽  
pp. 01-08
Author(s):  
Aakriti Shukla ◽  
Apoorva Pathak

Candida albicans is currently the fourth-leading cause of hospital-acquired bloodstream infections, reaching a mortality rate of up to 35–40% for systemic or disseminated infections. Systemic mycoses can occur in patients with severely impaired immune systems (AIDS), with organ or bone marrow transplants, cancer patients undergoing chemotherapy, and patients in ICU (neonates and elderly). It is, therefore, obvious that there is a substantial need for fast, effective antifungal antibiotics to combat fungal infections. The present investigation has been proposed to screen effective fungal metabolites for the control of Candida albicans by evaluating the potential of fungal bioactive compounds, its purification and characterization


Author(s):  
Asghar Davood ◽  
Aneseh Rahimi ◽  
Maryam Iman ◽  
Parisa Azerang ◽  
Soroush Sardari ◽  
...  

Objective(s): Azole antifungal agents, which are widely used as antifungal antibiotics, inhibit cytochrome P450 sterol 14α-demethylase (CYP51). Nearly all azole antifungal agents are N-substituted azoles. In addition, an azolylphenalkyl pharmacophore is uniquely shared by all azole antifungals. Due to importance of nitrogen atom of azoles (N-3 of imidazole and N-4 of triazole) in coordination with heme in the binding site of the enzyme, here a group of N- un-substituted azoles in which both of nitrogen is un-substituted was reported. Materials and Methods: Designed compounds were synthesized by reaction of imidazole-4-carboxaldehyde with appropriate arylamines and subsequently reduced to desired amine derivatives. Antifungal activity against Candida albicans and Saccharomyces cervisiae were done using a broth micro-dilution assay. Docking studies were done using AutoDock. Results: Antimicrobial evaluation revealed that some of these compounds exhibited moderate antimicrobial activities against tested pathogenic fungi, wherein compound 3, 7 and 8 were potent. Docking studies propose that all of the prepared azoles interacted with 14α-DM, wherein azole-heme coordination play main role in drug-receptor interaction. Conclusion: Our results offer some useful references in order to molecular design performance or modification of this series of compounds as a lead compound to discover new and potent antimicrobial agents.


Sign in / Sign up

Export Citation Format

Share Document