scholarly journals Detectability comparison of simulated tumors in digital breast tomosynthesis using high-energy X-ray inline phase sensitive and commercial imaging systems

2018 ◽  
Vol 47 ◽  
pp. 34-41 ◽  
Author(s):  
Muhammad U. Ghani ◽  
Molly D. Wong ◽  
Farid H. Omoumi ◽  
Bin Zheng ◽  
Laurie L. Fajardo ◽  
...  
2021 ◽  
Author(s):  
Muhammad U. Ghani ◽  
Xizeng Wu ◽  
Laurie L. Fajardo ◽  
Zhengxue Jing ◽  
Molly D. Wong ◽  
...  

Author(s):  
Ghani Muhammad ◽  
Laurie Fajardo ◽  
Farid Omoumi ◽  
Molly D. Wong ◽  
Yuhua Li ◽  
...  

Author(s):  
Leandro Barbosa da Silveira Gatto ◽  
Delson Braz ◽  
Leonardo Pacifico ◽  
Paulo Travassos ◽  
Luis Alexandre Goncalves Magalhaes

Abstract Digital breast tomosynthesis (DBT) is a screening and diagnostic modality that acquires images of a breast at multiple angles during a short scan. The Selenia Dimensions (Hologic, Bedford, Mass) DBT system can perform both full-field digital mammography and DBT. The system acquires 25 projections over a 15° angular range (from −7.5° to +7.5°). X-ray spectroscopy is generally linked with a high-resolution semiconductor detector through a correction to its energy response function. The energy spectrum describes the radiation field, in which several quality parameters can be extracted, such as the effective energy, half-value layer and exposure. X-ray spectroscopy is usually performed with solid-state semiconductor detectors. Radiation dose is a concern in mammography, as the current protocols recommend that medical physicians evaluate mean glandular dose (MGD) as a part of service quality control. Studies are needed for radiation dose optimization from tomosynthesis patients. The COMET metrological X-ray tube, considered as with a constant potential and cooled, has proved to be a crucial tool in order to obtain the high energy resolution for low-energy radiographs in mammography. The Monte Carlo method, through Monte Carlo N-Particle eXtended (MCNPX), was proven to be an essential tool for image formation and posterior analysis of the deposited dose from breast simulators and radiographic contrast evaluation, for several anode/filter combinations. The purpose of this work was to assess the MGD and spectra in slabs of polymethyl methacrylate (PMMA) and breast equivalent thicknesses using four experiments with a Hologic Selenia Dimensions mammography X-ray tube with multimeter, a spectrometer (only for spectra, in this case), a metrological X-ray tube with a multimeter, and the MCNPX code. References indicate that the real conditions for a mammography X-ray tube that conducts tomosynthesis include tube voltages of 26, 29, 30 and 33 kVp. Taking into account several thicknesses of PMMA, both the MGD and spectral results were in accordance with the references. Most of the spectra were in accordance with the references, showing that the resources used in the experiments can evaluate the energy level received by a patient. The MGD values were lower than those in the references from 30 to 50 mm PMMA, and the data can be used for improvements in the detectors used in the Laboratory of Metrology in the State of Rio de Janeiro University, Brazil. Additionally, in the future, optimization of image quality can be performed for both semiconductors and mammography X-ray equipment.


2021 ◽  
pp. 1-13
Author(s):  
Muhammad U. Ghani ◽  
Farid H. Omoumi ◽  
Xizeng Wu ◽  
Laurie L. Fajardo ◽  
Bin Zheng ◽  
...  

PURPOSE: To compare imaging performance of a cadmium telluride (CdTe) based photon counting detector (PCD) with a CMOS based energy integrating detector (EID) for potential phase sensitive imaging of breast cancer. METHODS: A high energy inline phase sensitive imaging prototype consisting of a microfocus X-ray source with geometric magnification of 2 was employed. The pixel pitch of the PCD was 55μm, while 50μm for EID. The spatial resolution was quantitatively and qualitatively assessed through modulation transfer function (MTF) and bar pattern images. The edge enhancement visibility was assessed by measuring edge enhancement index (EEI) using the acrylic edge acquired images. A contrast detail (CD) phantom was utilized to compare detectability of simulated tumors, while an American College of Radiology (ACR) accredited phantom for mammography was used to compare detection of simulated calcification clusters. A custom-built phantom was employed to compare detection of fibrous structures. The PCD images were acquired at equal, and 30% less mean glandular dose (MGD) levels as of EID images. Observer studies along with contrast to noise ratio (CNR) and signal to noise ratio (SNR) analyses were performed for comparison of two detection systems. RESULTS: MTF curves and bar pattern images revealed an improvement of about 40% in the cutoff resolution with the PCD. The excellent spatial resolution offered by PCD system complemented superior detection of the diffraction fringes at boundaries of the acrylic edge and resulted in an EEI value of 3.64 as compared to 1.44 produced with EID image. At MGD levels (standard dose), observer studies along with CNR and SNR analyses revealed a substantial improvement of PCD acquired images in detection of simulated tumors, calcification clusters, and fibrous structures. At 30% less MGD, PCD images preserved image quality to yield equivalent (slightly better) detection as compared to the standard dose EID images. CONCLUSION: CdTe-based PCDs are technically feasible to image breast abnormalities (low/high contrast structures) at low radiation dose levels using the high energy inline phase sensitive imaging technique.


Author(s):  
Gautam S. Muralidhar ◽  
Alan C. Bovik ◽  
Mia K. Markey

The last 15 years has seen the advent of a variety of powerful 3D x-ray based breast imaging modalities such as digital breast tomosynthesis, digital breast computed tomography, and stereo mammography. These modalities promise to herald a new and exciting future for early detection and diagnosis of breast cancer. In this chapter, the authors review some of the recent developments in 3D x-ray based breast imaging. They also review some of the initial work in the area of computer-aided detection and diagnosis for 3D x-ray based breast imaging. The chapter concludes by discussing future research directions in 3D computer-aided detection.


1975 ◽  
Author(s):  
A. E. Stewart

This paper discusses the development of a real-time high energy x-ray imaging system for use in dynamic fluoroscopy of aero gas turbines. In order to cover the range of subjects on gas turbines, over ten combinations of film and screen types are used. Three different types of x-ray imaging systems were considered for use: direct type intensifiers (cesium iodide phosphors), and indirect type intensifiers — Marconi “Marionette” and the Oude Delft “Delcalix.”


2013 ◽  
Vol 15 (22) ◽  
pp. 8629 ◽  
Author(s):  
Davide Ferri ◽  
Mark A. Newton ◽  
Marco Di Michiel ◽  
Songhak Yoon ◽  
Gian Luca Chiarello ◽  
...  

2011 ◽  
Vol 38 (11) ◽  
pp. 6188-6202 ◽  
Author(s):  
Raymond J. Acciavatti ◽  
Andrew D. A. Maidment

Sign in / Sign up

Export Citation Format

Share Document