Amino acid chelated iron versus an iron salt in the treatment of iron deficiency anemia with pregnancy: A randomized controlled study

Author(s):  
Ghada Abdel Fattah Abdel Moety ◽  
Ahmed Mahmoud Ali ◽  
Reham Fouad ◽  
Wafaa Ramadan ◽  
Doaa Shafie Belal ◽  
...  
Author(s):  
Adam K. Lewkowitz ◽  
Molly J. Stout ◽  
Emily Cooke ◽  
Seon C. Deoni ◽  
Viren D'Sa ◽  
...  

Objective Iron-deficiency anemia (IDA) can have serious consequences for mothers and babies. Iron supplementation is recommended, but the administration route is controversial. We sought to conduct a randomized controlled trial (RCT) testing the effectiveness and safety of intravenous (IV) iron compared with oral iron on perinatal outcomes in pregnant women with IDA. Study Design This open-label RCT randomized patients with IDA (hemoglobin [hgb] <10 g/dL and ferritin <30 ng/mL) at 24 to 34 weeks' to oral iron or single 1,000-mg dose of IV low-molecular weight iron dextran over one hour. The primary outcome was maternal anemia at delivery (hgb < 11 g/dL). Secondary outcomes were mild/moderate or severe adverse reactions, maternal hgb and ferritin at delivery, blood transfusion, gestational age at delivery, birth weight, neonatal hgb and ferritin, and composite neonatal morbidity. Analysis was as per protocol. Results The trial was stopped early for logistical reasons, and the data analyzed as preliminary data to inform a larger, potentially externally funded, definitive trial. Of 55 patients approached, 38 consented. Of these, 15 were withdrawn: 5 received IV iron from their primary obstetrician after being randomized to oral iron and 10 declined to receive IV iron. Of the remaining 23 patients, who were included in the analytic population, 13 received oral iron and 10 received IV iron. The rate of maternal anemia at delivery (hgb < 11 g/dL) was high overall but significantly reduced with IV iron (40 vs. 85%, p = 0.039). Rates of maternal hgb < 10 g/dL were significantly lower in the IV iron group (10 vs. 54%, p = 0.029). There were no severe adverse reactions and similar rates of mild/moderate reactions between groups. Conclusion IV iron reduces rates of anemia at the time of admission for delivery, supporting a larger RCT comparing IV versus oral iron for the treatment of IDA of pregnancy powered for definitive clinical outcomes. However, issues uncovered in this RCT suggest that patient, clinician, and systems-level barriers associated with different IDA treatment modalities must be considered prior to conducting a larger RCT. This study is registered with clinicaltrials.gov with identifier no.: NCT03438227. Key Points


2004 ◽  
Vol 74 (6) ◽  
pp. 435-443 ◽  
Author(s):  
Hertrampf ◽  
Olivares

Iron amino acid chelates, such as iron glycinate chelates, have been developed to be used as food fortificants and therapeutic agents in the prevention and treatment of iron deficiency anemia. Ferrous bis-glycine chelate (FeBC), ferric tris-glycine chelate, ferric glycinate, and ferrous bis-glycinate hydrochloride are available commercially. FeBC is the most studied and used form. Iron absorption from FeBC is affected by enhancers and inhibitors of iron absorption, but to a lesser extent than ferrous sulfate. Its absorption is regulated by iron stores. FeBC is better absorbed from milk, wheat, whole maize flour, and precooked corn flour than is ferrous sulfate. Supplementation trials have demonstrated that FeBC is efficacious in treating iron deficiency anemia. Consumption of FeBC-fortified liquid milk, dairy products, wheat rolls, and multi-nutrient beverages is associated with an improvement of iron status. The main limitations to the widespread use of FeBC in national fortification programs are the cost and the potential for promoting organoleptic changes in some food matrices. Additional research is required to establish the bioavailability of FeBC in different food matrices. Other amino acid chelates should also be evaluated. Finally there is an urgent need for more rigorous efficacy trials designed to define the relative merits of amino acid chelates when compared with bioavailable iron salts such as ferrous sulfate and ferrous fumarate and to determine appropriate fortification levels


Sign in / Sign up

Export Citation Format

Share Document