Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints

2012 ◽  
Vol 218 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Roberto Baldacci ◽  
Aristide Mingozzi ◽  
Roberto Roberti
4OR ◽  
2010 ◽  
Vol 8 (3) ◽  
pp. 221-238 ◽  
Author(s):  
Hideki Hashimoto ◽  
Mutsunori Yagiura ◽  
Shinji Imahori ◽  
Toshihide Ibaraki

2014 ◽  
Vol 12 (10) ◽  
pp. 3945-3951
Author(s):  
Dr P.K Chenniappan ◽  
Mrs.S.Aruna Devi

The vehicle routing problem is to determine K vehicle routes, where a route is a tour that begins at the depot, traverses a subset of the customers in a specified sequence and returns to the depot. Each customer must be assigned to exactly one of the K vehicle routes and total size of deliveries for customers assigned to each vehicle must not exceed the vehicle capacity. The routes should be chosen to minimize total travel cost. Thispapergivesasolutiontofindanoptimumrouteforvehicle routingproblem using Hybrid Encoding GeneticAlgorithm (HEGA)technique tested on c++ programming.The objective is to find routes for the vehicles to service all the customers at a minimal cost and time without violating the capacity, travel time constraints and time window constraints


Author(s):  
Ruslan Sadykov ◽  
Eduardo Uchoa ◽  
Artur Pessoa

We consider the shortest path problem with resource constraints arising as a subproblem in state-of-the-art branch-cut-and-price algorithms for vehicle routing problems. We propose a variant of the bidirectional label-correcting algorithm in which the labels are stored and extended according to the so-called bucket graph. This organization of labels helps to significantly decrease the number of dominance checks and the running time of the algorithm. We also show how the forward/backward route symmetry can be exploited and how to eliminate arcs from the bucket graph using reduced costs. The proposed algorithm can be especially beneficial for vehicle routing instances with large vehicle capacity and/or with time window constraints. Computational experiments were performed on instances from the distance-constrained vehicle routing problem, including multidepot and site-dependent variants, on the vehicle routing problem with time windows, and on the “nightmare” instances of the heterogeneous fleet vehicle routing problem. Significant improvements over the best algorithms in the literature were achieved, and many instances could be solved for the first time.


Author(s):  
Ольга Эдуардовна Долгова ◽  
Владимир Викторович Пересветов

Рассмотрена задача маршрутизации транспорта с ограничениями по временным окнам. Требовалось составить план доставки товара клиентам, построив маршруты движения идентичных транспортных средств так, чтобы общая длина пройденного пути была минимальной. Для решения задачи разработан гибридный алгоритм. Он состоит из методов построения исходных решений, муравьиного алгоритма и локального поиска. В муравьином алгоритме в процессе формирования маршрутов разрешается нарушение временных ограничений при условии добавления штрафа в целевую функцию. Предложенный метод показал высокую эффективность при решении задач кластерного типа и задач с долгосрочным горизонтом планирования. The purpose of this paper is to improve the performance of a hybrid method based on ant colony optimization (ACO) that finds approximate solutions of the vehicle routing problem with time windows (VRPTW). In order to solve this problem it is required to design a plan for goods delivery to the customers generating the routes of identical vehicles so that the total travelled distance is minimal. For the VRPTW solving, the hybrid method is developed in which a usage of trial solutions makes it possible to explore the most promising parts of the search space. The initial methods for solution construction, an ant colony optimization (ACO) algorithm and local search are proposed in the framework of the hybrid method. In the ACO algorithm, when generating the routes, it is allowed to violate the time window constraints. A method to restore the feasibility of solutions is implemented within the relaxation scheme under “returns in time” principle. Numerical results for solving all problems with 25, 50 and 100 customers from the Solomon test set are obtained. We provide the results on the time and deviation of the solution of these problems in comparison with the results of other authors. Some problems and their classes were solved much faster by the algorithm proposed in this paper. Relative deviations from optimal values of the objective function for the most complex tasks decrease with increasing decision time. The proposed approach can be considered to be an additional or an alternative algorithm for solving the cluster type and the long-term planning horizon problems of the VRPTW.


2018 ◽  
Vol 7 (2.32) ◽  
pp. 80 ◽  
Author(s):  
Avirup Guha Neogi ◽  
Singamreddy Mounika ◽  
Salagrama Kalyani ◽  
S A. Yogananda Sai

Ant Colony Optimization (ACO) is a nature-inspired swarm intelligence technique and a metaheuristic approach which is inspired by the foraging behavior of the real ants, where ants release pheromones to find the best and shortest route from their nest to the food source. ACO is being applied to various optimization problems till date and has been giving good quality results in the field. One such popular problem is known as Vehicle Routing Problem(VRP). Among many variants of VRP, this paper presents a comprehensive survey on VRP with Time Window constraints(VRPTW). The survey is presented in a chronological order discussing which of the variants of ACO is used in each paper followed by the advantages and limitations of the same.  


2013 ◽  
Vol 204 (1) ◽  
pp. 171-187 ◽  
Author(s):  
Hideki Hashimoto ◽  
Mutsunori Yagiura ◽  
Shinji Imahori ◽  
Toshihide Ibaraki

Sign in / Sign up

Export Citation Format

Share Document