scholarly journals A Comprehensive Study of Vehicle Routing Problem With Time Windows Using Ant Colony Optimization Techniques

2018 ◽  
Vol 7 (2.32) ◽  
pp. 80 ◽  
Author(s):  
Avirup Guha Neogi ◽  
Singamreddy Mounika ◽  
Salagrama Kalyani ◽  
S A. Yogananda Sai

Ant Colony Optimization (ACO) is a nature-inspired swarm intelligence technique and a metaheuristic approach which is inspired by the foraging behavior of the real ants, where ants release pheromones to find the best and shortest route from their nest to the food source. ACO is being applied to various optimization problems till date and has been giving good quality results in the field. One such popular problem is known as Vehicle Routing Problem(VRP). Among many variants of VRP, this paper presents a comprehensive survey on VRP with Time Window constraints(VRPTW). The survey is presented in a chronological order discussing which of the variants of ACO is used in each paper followed by the advantages and limitations of the same.  

2012 ◽  
Vol 263-266 ◽  
pp. 1609-1613 ◽  
Author(s):  
Su Ping Yu ◽  
Ya Ping Li

The Vehicle Routing Problem (VRP) is an important problem occurring in many distribution systems, which is also defined as a family of different versions such as the Capacitated Vehicle Routing Problem (CVRP) and the Vehicle Routing Problem with Time Windows (VRPTW). The Ant Colony Optimization (ACO) is a metaheuristic for combinatorial optimization problems. Given the ACO inadequacy, the vehicle routing optimization model is improved and the transfer of the algorithm in corresponding rules and the trajectory updated regulations is reset in this paper, which is called the Improved Ant Colony Optimization (I-ACO). Compared to the calculated results with genetic algorithm (GA) and particle swarm optimization (PSO), the correctness of the model and algorithm is verified. Experimental results show that the I-ACO can quickly and effectively obtain the optimal solution of VRFTW.


Author(s):  
Ольга Эдуардовна Долгова ◽  
Владимир Викторович Пересветов

Рассмотрена задача маршрутизации транспорта с ограничениями по временным окнам. Требовалось составить план доставки товара клиентам, построив маршруты движения идентичных транспортных средств так, чтобы общая длина пройденного пути была минимальной. Для решения задачи разработан гибридный алгоритм. Он состоит из методов построения исходных решений, муравьиного алгоритма и локального поиска. В муравьином алгоритме в процессе формирования маршрутов разрешается нарушение временных ограничений при условии добавления штрафа в целевую функцию. Предложенный метод показал высокую эффективность при решении задач кластерного типа и задач с долгосрочным горизонтом планирования. The purpose of this paper is to improve the performance of a hybrid method based on ant colony optimization (ACO) that finds approximate solutions of the vehicle routing problem with time windows (VRPTW). In order to solve this problem it is required to design a plan for goods delivery to the customers generating the routes of identical vehicles so that the total travelled distance is minimal. For the VRPTW solving, the hybrid method is developed in which a usage of trial solutions makes it possible to explore the most promising parts of the search space. The initial methods for solution construction, an ant colony optimization (ACO) algorithm and local search are proposed in the framework of the hybrid method. In the ACO algorithm, when generating the routes, it is allowed to violate the time window constraints. A method to restore the feasibility of solutions is implemented within the relaxation scheme under “returns in time” principle. Numerical results for solving all problems with 25, 50 and 100 customers from the Solomon test set are obtained. We provide the results on the time and deviation of the solution of these problems in comparison with the results of other authors. Some problems and their classes were solved much faster by the algorithm proposed in this paper. Relative deviations from optimal values of the objective function for the most complex tasks decrease with increasing decision time. The proposed approach can be considered to be an additional or an alternative algorithm for solving the cluster type and the long-term planning horizon problems of the VRPTW.


Author(s):  
Hongguang Wu ◽  
Yuelin Gao ◽  
Wanting Wang ◽  
Ziyu Zhang

AbstractIn this paper, we propose a vehicle routing problem with time windows (TWVRP). In this problem, we consider a hard time constraint that the fleet can only serve customers within a specific time window. To solve this problem, a hybrid ant colony (HACO) algorithm is proposed based on ant colony algorithm and mutation operation. The HACO algorithm proposed has three innovations: the first is to update pheromones with a new method; the second is the introduction of adaptive parameters; and the third is to add the mutation operation. A famous Solomon instance is used to evaluate the performance of the proposed algorithm. Experimental results show that HACO algorithm is effective against solving the problem of vehicle routing with time windows. Besides, the proposed algorithm also has practical implications for vehicle routing problem and the results show that it is applicable and effective in practical problems.


2014 ◽  
Vol 1061-1062 ◽  
pp. 1108-1117
Author(s):  
Ya Lian Tang ◽  
Yan Guang Cai ◽  
Qi Jiang Yang

Aiming at vehicle routing problem (VRP) with many extended features is widely used in actual life, multi-depot heterogeneous vehicle routing problem with soft time windows (MDHIVRPSTW) mathematical model is established. An improved ant colony optimization (IACO) is proposed for solving this model. Firstly, MDHIVRPSTW was transferred into different groups according to nearest depot method, then constructing the initial route by scanning algorithm (SA). Secondly, genetic operators were introduced, and then adjusting crossover probability and mutation probability adaptively in order to improve the global search ability of the algorithm. Moreover, smooth mechanism was used to improve the performance of ant colony optimization (ACO). Finally, 3-opt strategy was used to improve the local search ability. The proposed IACO has been tested on a 32-customer instance which was generated randomly. The experimental results show that IACO is superior to other three algorithms in terms of convergence speed and solution quality, thus the proposed method is effective and feasible, and the proposed model is better than conventional model.


2018 ◽  
Vol 9 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Lahcene Guezouli ◽  
Mohamed Bensakhria ◽  
Samir Abdelhamid

In this article, the authors propose a decision support system which aims to optimize the classical Capacitated Vehicle Routing Problem by considering the existence of multiple available depots and a time window which must not be violated, that they call the Multi-Depot Vehicle Routing Problem with Time Window (MDVRPTW), and with respecting a set of criteria including: schedules requests from clients, the capacity of vehicles. The authors solve this problem by proposing a recently published technique based on soccer concepts, called Golden Ball (GB), with different solution representation from the original one, this technique was designed to solve combinatorial optimization problems, and by embedding a clustering algorithm. Computational results have shown that the approach produces acceptable quality solutions compared to the best previous results in similar problem in terms of generated solutions and processing time. Experimental results prove that the proposed Golden Ball algorithm is efficient and effective to solve the MDVRPTW problem.


2014 ◽  
Vol 12 (10) ◽  
pp. 3945-3951
Author(s):  
Dr P.K Chenniappan ◽  
Mrs.S.Aruna Devi

The vehicle routing problem is to determine K vehicle routes, where a route is a tour that begins at the depot, traverses a subset of the customers in a specified sequence and returns to the depot. Each customer must be assigned to exactly one of the K vehicle routes and total size of deliveries for customers assigned to each vehicle must not exceed the vehicle capacity. The routes should be chosen to minimize total travel cost. Thispapergivesasolutiontofindanoptimumrouteforvehicle routingproblem using Hybrid Encoding GeneticAlgorithm (HEGA)technique tested on c++ programming.The objective is to find routes for the vehicles to service all the customers at a minimal cost and time without violating the capacity, travel time constraints and time window constraints


Author(s):  
Ruslan Sadykov ◽  
Eduardo Uchoa ◽  
Artur Pessoa

We consider the shortest path problem with resource constraints arising as a subproblem in state-of-the-art branch-cut-and-price algorithms for vehicle routing problems. We propose a variant of the bidirectional label-correcting algorithm in which the labels are stored and extended according to the so-called bucket graph. This organization of labels helps to significantly decrease the number of dominance checks and the running time of the algorithm. We also show how the forward/backward route symmetry can be exploited and how to eliminate arcs from the bucket graph using reduced costs. The proposed algorithm can be especially beneficial for vehicle routing instances with large vehicle capacity and/or with time window constraints. Computational experiments were performed on instances from the distance-constrained vehicle routing problem, including multidepot and site-dependent variants, on the vehicle routing problem with time windows, and on the “nightmare” instances of the heterogeneous fleet vehicle routing problem. Significant improvements over the best algorithms in the literature were achieved, and many instances could be solved for the first time.


Sign in / Sign up

Export Citation Format

Share Document