Evaluation of the expected makespan of a set of non-resumable jobs on parallel machines with stochastic failures

2015 ◽  
Vol 240 (2) ◽  
pp. 439-446 ◽  
Author(s):  
W. von Hoyningen-Huene ◽  
G.P. Kiesmüller
1988 ◽  
Vol 25 (04) ◽  
pp. 752-762 ◽  
Author(s):  
Tapani Lehtonen

We consider a system where jobs are processed by parallel machines. The processing times are exponentially distributed. An essential feature is that the assignment of the jobs to the machines is decided before the system starts to work. We consider both the flow time and the makespan. In the case of the flow time we allow both the machines and the jobs to be non-homogeneous. The optimization is by minimizing the flow time in the sense of stochastic order and the optimal assignment is obtained for this case. The case of the makespan is harder. We consider the expected makespan and as a partial solution we prove an optimality result for the case where there are two non-homogeneous machines and the jobs are homogeneous. It turns out that the optimal assignment can be expressed by using a quantile of a binomial distribution.


1997 ◽  
Vol 11 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Sem Borst ◽  
John Bruno ◽  
E. G. Coffman ◽  
Steven Phillips

Simple optimal policies are known for the problem of scheduling jobs to minimize expected makespan on two parallel machines when the job running-time distribution has a monotone hazard rate. But no such policy appears to be known in general. We investigate the general problem by adopting two-point running-time distributions, the simplest discrete distributions not having monotone hazard rates. We derive a policy that gives an explicit, compact solution to this problem and prove its optimality. We also comment briefly on first-order extensions of the model, but each of these seems to be markedly more difficult to analyze.


1985 ◽  
Vol 22 (3) ◽  
pp. 739-744 ◽  
Author(s):  
Michael Pinedo ◽  
Zvi Schechner

Consider n jobs and m machines. The m machines are identical and set up in parallel. All n jobs are available at t = 0 and each job has to be processed on one of the machines; any one can do. The processing time of job j is Xj, a random variable with distribution Fj. The sequence in which the jobs start with their processing is predetermined and preemptions are not allowed. We investigate the effect of the variability of the processing times on the expected makespan and the expected time to first idleness. Bounds are presented for these quantities in case the distributions of the processing times of the jobs are new better (worse) than used.


1988 ◽  
Vol 25 (4) ◽  
pp. 752-762 ◽  
Author(s):  
Tapani Lehtonen

We consider a system where jobs are processed by parallel machines. The processing times are exponentially distributed. An essential feature is that the assignment of the jobs to the machines is decided before the system starts to work. We consider both the flow time and the makespan. In the case of the flow time we allow both the machines and the jobs to be non-homogeneous. The optimization is by minimizing the flow time in the sense of stochastic order and the optimal assignment is obtained for this case. The case of the makespan is harder. We consider the expected makespan and as a partial solution we prove an optimality result for the case where there are two non-homogeneous machines and the jobs are homogeneous. It turns out that the optimal assignment can be expressed by using a quantile of a binomial distribution.


1985 ◽  
Vol 22 (03) ◽  
pp. 739-744
Author(s):  
Michael Pinedo ◽  
Zvi Schechner

Consider n jobs and m machines. The m machines are identical and set up in parallel. All n jobs are available at t = 0 and each job has to be processed on one of the machines; any one can do. The processing time of job j is Xj , a random variable with distribution Fj. The sequence in which the jobs start with their processing is predetermined and preemptions are not allowed. We investigate the effect of the variability of the processing times on the expected makespan and the expected time to first idleness. Bounds are presented for these quantities in case the distributions of the processing times of the jobs are new better (worse) than used.


Author(s):  
Fransiskus Lauson Matondang ◽  
Rosnani Ginting

PT XYZ sering mengalami keterlambatan waktu karena dalam setiap keterlambatan yang dilakukan selalu ada penalty yang diberikan kepada perusahaan dan hal ini mengakibatkan tambahan biaya , oleh karena itu hal ini harus dihindari dengan membuat penjadwalan yang efisien, dalam hal ini dilakukanlah perbaikan dengan meminimisasi waktu penyelesaian maksimum Cmax pada mesin paralel yang berpola aliran flowshop (dan tidak boleh dilakukan interupsi yang dilakukan pada pekerjaan yang sedang diproses, untuk melakukan pekerjaan lainnya, satu lintasan hanya memproduksi satu produk dan hanya satu produk juga yang dikerjakan secara langsung. Waktu penyelesaian yang berbeda dari setiap mesin dengan pengerjaannya juga adalah masalah yang dihadapi untuk menjadikan mesin mesin ini sesuai menjadi satu penjadwalan yang terintegrasi dengan metode integer programming yang membuat penjadwalan dengan konsep riset operasi dengan metode pendekatan 0-1 utuk menjadi lebih efisien lagi , dihasilkan minimisasi keterlambatan total penyelesaian order dengan 42,28 menit lebih baik dari sebelumnya.   PT XYZ often experiences time delays because in every delay made there is always a penalty given to the company and this results in additional costs, therefore this must be avoided by making efficient scheduling, in this case repairs are carried out by minimizing the maximum completion time of Cmax on parallel machines that are patterned with flowshop flow (and no interruptions should be carried out on the work being processed, to do other work, one track only produces one product and only one product is directly worked. Different completion times of each machine with the workmanship is also the problem faced to make this machine suitable to be one scheduling integrated with integer programming methods that makes scheduling with the operational research concept with the 0-1 approach method to be more efficient, resulting in minimization of the delay in the total settlement of orders with 42.28 minutes was better than before.


2017 ◽  
Vol 58 ◽  
pp. 314
Author(s):  
Yiwei Jiang ◽  
Ping Zhou ◽  
Huijuan Wang ◽  
Jueliang Hu

Sign in / Sign up

Export Citation Format

Share Document