total settlement
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 17)

H-INDEX

8
(FIVE YEARS 0)

Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Md Shariful Islam ◽  
Magued Iskander

A parametric study that examines the ground surface settlement due to the excavation of shallow offset arrangement twin tunnels is presented. Offset arrangement tunnels are those that run parallel to each other, but at different elevations. The study focuses on the influence of both the construction sequence and various geometric parameters on the induced soil settlement. A series of three-dimensional finite element analyses was carried out to investigate the settlement behavior and interactions between offset arrangement twin tunnels excavated in clay using a simplified mechanized excavation method. Analyses were carried out for three cover-to-diameter (C/D) ratios, three possible construction sequences, five angular relative positions, and five angular spacings. In addition, settlement data were also investigated by varying horizontal and vertical spacings while keeping the angular spacing constant. The total settlement of the excavated twin tunnels and the settlement induced solely by the new second tunnel are both presented, and special attention was paid to identifying the dominant geometric parameters. The observed data trends from this study are generally consistent with the limited data available in the literature. This study confirmed a few perceived behaviors. First, angular relative position better describes the settlement behavior in comparison to angular spacing. Second, the effect of the vertical distance is noticeably more significant than that of the horizontal distance between the two tunnels. Third, excavation of the lower tunnel at first induces higher total ground settlement than when the upper tunnel is excavated first or when both tunnels are excavated concurrently. Fourth, settlement due to the construction of the newer tunnel decreases with the increase in the cover depth. In addition, two design charts have been proposed to calculate the settlement induced from a new second tunnel excavation and the eccentricity of the maximum total settlement relative to the center of the new tunnel.



2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Deliang Zhu ◽  
Yue Li ◽  
Lingwei Zheng ◽  
Pengfei Fang ◽  
Xinyu Xie

To study the pile-forming mechanism and bearing deformation characteristics of continuous flight auger (CFA) piles, a series of procedures, including helical drilling, pulling up/grouting, and inserting cage/pile forming, were simulated in clay-sand double-layer foundations by a homemade model drilling machine system in laboratory model tests. The effects of two different pile-forming methods on the load transfer and bearing characteristics of the piles were investigated by performing a model test comparison of CFA piles and bored piles. The experimental results show that there exist a soil improvement effect around the pile and a diameter expansion effect during the drilling process and grouting process for the CFA pile, which can effectively improve the lateral friction resistance of the pile. Compared with the bored pile, the pile diameter in the middle of the CFA pile increased by 19%, and the total lateral friction resistance of the CFA pile increased by 9.1% at a high load (1500 N). The comparative results of the model tests show that the bearing capacity of a single CFA pile increased by 50.0% and that the total settlement decreased by 40.5%. The results of the in situ test piles show that the load-settlement curves of the two pile types are similar under low-medium loads and that the lateral friction resistance of the CFA pile under high loads is better developed, which is relatively consistent with the model test results.



2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fang Tong ◽  
Qiang Ma ◽  
Bin Hu ◽  
Zhenyi Zheng

In this paper, a series of model tests about the trapezoidal filling structures filled with tire reinforced concrete particles has been conducted to study their stability and the ultimate bearing capacity. The effects of the reinforcing tire slices on the global stability and ultimate bearing capacity of the model were investigated, the results show that the tire slices reinforcement can reduce the total settlement of the trapezoidal filling structure, and the ultimate bearing capacity of the reinforced trapezoidal filling structure with tire slices is obviously improved. Among them, the settlements of crushed concrete particles reinforced with bottom layer, top layer, and two layers (both bottom layer and top layer) waste tire slices are 11.5%, 37.7%, and 46.2% less than that of unreinforcement, respectively. Compared with unreinforcement, when the top layer of the model is reinforced with tire slices, the Earth pressure values at the top layer and the bottom layer are reduced by 21.1% and 22.7%, respectively; the Earth pressure values at the top layer and the bottom layer are reduced 6.3% and 14.3%, respectively, when the bottom layer of the model is reinforced with tire slices, and the Earth pressure values at the top layer and the bottom layer are reduced 23.4% and 32.9%, respectively, when the two layers of the model are reinforced with tire slices. The sliding surface of the pure concrete particles filled trapezoidal structure is continuous and runs through the whole trapezoidal filling structure slope; the sliding zone of reinforced trapezoidal filling structure with tire slices decreases with the laying of tire slices.



2021 ◽  
Vol 44 (4) ◽  
pp. 1-10
Author(s):  
Moisés Lemos ◽  
Lucas Guimarães ◽  
André Cavalcante

Several regions in Brazil and the world suffer from the presence of collapsible soils. The development of theories for understanding the phenomenon is significant because the increase of water content is associated with several reasons (e.g., precipitation, rupture of sewage, and water systems). Although some theories explain the behavior of various types of soils, they fail to explain collapsible and structured soils. In this research, an alternative interpretation of the consolidation theory is verified and calibrated for collapsible soil. The alternative model was applied to experimental data from a latosol from southeastern Brazil, and comparisons with the classical theory showed a difference in the saturated hydraulic conductivity of around 100 times. The observation showed promising results compared with the saturated hydraulic conductivity of the field (Guelph Permeameter). Furthermore, consolidation tests verified the collapse potential, the variation of consolidation coefficient and saturated hydraulic conductivity, and the total settlement prevision due to the presence of bleach and washing powder.



Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6842
Author(s):  
Zygmunt Meyer ◽  
Magdalena Olszewska

Compressibility is one of the most important mechanical properties of soil. The parameter that characterizes compressibility is the constrained modulus of elasticity. Knowledge of this is important to calculate the settlement of a structure foundation on peat material. According to soil classification by EN ISO 14688-2, peat is an organic soil that contains min. 20% organic matter. It is a highly organic type of soil. Peat material has large compressibility. The value of the constrained elasticity modulus for peat is ca. 400 kPa, while it may be ca 1.0–1.6 MPa for consolidated peat. Due to the extensive range of the modulus, experimental research in this field is proposed. It is suggested to load the peat material layer with an embankment and to determine its total settlement. Based on this, a program was developed to determine the settlement–strain relationship. The authors propose an approach according to two models: the first is based on constant stress distribution in the soil with an oedometer test. The second considers the variability of stresses in the soil and the influence of the loaded area. Both methods were tested based on numerical simulations, and then an experimental field in Szczecin was used. The formulae for the constrained modulus of elasticity measurement were derived; in practical conditions, a uniaxial deformation state can be used with the combination of the total settlement.



Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2117
Author(s):  
Keke Li ◽  
Wenyuan Xu ◽  
Liang Yang

The deformation characteristics of a raised and widened old Chinese roadway on a soft soil foundation are investigated in this study via finite element numerical simulation. The rules of ground surface settlement, slope foot lateral displacement, and ground surface settlement evolution of the roadbed under three modes (one-time construction of an eight-lane expressway, widened four-lane expressway, and raised/widened four-lane expressway) are compared. The ground surface settlement process of the eight-lane road foundation, which is formed by first widening and then raising the road, is highly complex. The ground surface settlement curve under the old road foundation increases and then decreases. The lateral displacement of the slope foot also interacts with the widening and raising of the eight-lane roadbed foundation. The range of lateral displacement is 70.05, 42.58, 124.81, 104.54 mm. Fifteen years after construction, the total settlement of the raised and widened roadbed is much larger than that of the one built directly. The total settlement values at the center of the two roadbeds are 297.05 and 234.85 mm, respectively. This manuscript provides data support for the reconstruction and expansion of roads on soft soil foundations, for choosing appropriate construction methods to build roads, and for avoiding major road damage, which is of great significance to the construction of road infrastructure in the future.



2021 ◽  
Vol 1197 (1) ◽  
pp. 012002
Author(s):  
N. B. Umravia ◽  
C.H. Solanki

Abstract The Cement Fly Ash and Gravel (CFG) Pile and Encased Stone Column (ESC) are the ground improvement techniques. The main object of the study is to the numerical analysis of the Both techniques pile group were used to support the Embankment with and without the geotextile both techniques composite foundation by the Finite Element method under static and dynamic load analysis. Numerical simulation has been carried out in Plaxis 3D. A case study from china’s highspeed embankment supported by CFG and ESC have investigated the load caring capacity by soil and pile. While the failure behaviors, settlement, excess pore pressure, and lateral behavior with variable embankment loading and number of geosynthetic effect moreover, the diameter of CFG piles and ESC at various locations in an embankment has been varied to study its influence on the load distribution among the CFG piles/ESC and lateral load displacement of the pile group. The results show that increasing the diameter of both techniques reduced the total settlement and differential settlement of embankment. It observed that the seismic load has a significant effect on the vertical and lateral displacement.



2021 ◽  
Vol 23 (2) ◽  
pp. 94-103
Author(s):  
Chindy Dhia Tsabit N ◽  
Bitta Pigawati

The increase in population in Semarang City affects the trends in land use. Limited availability of land in contrast to the increasing demand for land has prompted residents to choose a place to live in a location not following its designation. Several settlements in Semarang City have developed in disaster-prone locations. This study aimed to determine the characteristics of settlements in disaster-prone areas, including aspects of land use, levels of vulnerability to natural hazards, and settlement distribution patterns. The research is a descriptive quantitative study with a spatial approach and utilizes images from remote sensing and Geographic Information systems (GIS). The results show that the settlements covering an area of 5,577 hectares or 33.5% of the total settlement area of Semarang City are in disaster-prone areas. Most disaster-prone areas have a moderate level of vulnerability. There are three patterns of settlement distribution in the study area, namely clustered, random, and dispersed patterns. Most districts in Semarang City have a random pattern of disaster-prone settlements. The settlement distribution pattern reflects the characteristics of each disaster-prone area.



Author(s):  
Shruti Birhare

Abstract: The significance of wind turbines in meeting the expanding energy demand is critical. Taller towers should be employed to boost the power producing capability. The foundation must be efficient in order to securely carry the heavier loads of taller towers. When sustaining loads from superstructure are considered then bearing capacity of raft is taken into account for pile raft foundation. Piles help to strengthen the raft's bearing capacity while also regulating settlement in this arrangement, particularly differential settlement. A hybrid foundation, i.e. a pile raft foundation, is investigated and geotechnically designed here. The effectiveness of this system is demonstrated using the measures total settlement, differential settlement, and rotation. Keywords: Pile raft foundation, differential settlement, total settlement, wind turbin, bearing capacity



2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chunwu Zhang ◽  
Wei Hou ◽  
Zongjun Sun ◽  
Li Gu

During the tunnel construction under the road, the shallower the tunnel depth, the greater the effect of the surface settlement. Thus, to analyze the ground settlement caused by tunnel construction under ultrasmall distance, the research is based on a tunnel in Ningqiang County and uses numerical simulation and measurement to analyze the ground settlement and the effect of reinforcement measures. The research draws the following conclusions. For the ultrasmall distance tunnel under road construction, the combination of pipe shed and advanced small pipe grouting reinforcement measures inhibits the surface settlement. After the advanced small pipe is reinforced, the surface settlement value is reduced by about 25%, and the reinforcement effect is more obvious after the increase of the large pipe shed. The surface settlement value is reduced by about 60%. The surface settlement caused by the excavation of the circular soil accounts for about 50%–60% of the total settlement value, which is for the whole construction. The key processes, which involve the combination of reinforcement measures, focused on the suppression of surface settlement caused by the excavation of the circular soil. After the reinforcement measures, the variation of the settlement groove width was not obvious but the curvature and peak value of the settlement groove is reduced significantly.



Sign in / Sign up

Export Citation Format

Share Document