Historical evolution and benefit–cost explanation of periodical fluctuation in coal mine safety supervision: An evolutionary game analysis framework

2015 ◽  
Vol 243 (3) ◽  
pp. 974-984 ◽  
Author(s):  
Dehai Liu ◽  
Xingzhi Xiao ◽  
Hongyi Li ◽  
Weiguo Wang
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yan Li ◽  
Yan Zhang ◽  
Haifeng Dai ◽  
Ziyan Zhao

In view of the particularity and high risk of coal mining industry, the decision-making behavior of multiple agents inside the coal-mine enterprise plays a very important role in ensuring the safety and sustainable development of coal mining industry. The existing literature studies on coal-mine safety production focus mainly on statically analyzing the game among the external entities such as the government, the enterprises themselves, and the employees inside the enterprise from a macro perspective,are short of research on revealing the dynamic interactions among the actors directly involved in the coal-mine accidents and also on proposals for effective interactions that will lead to improved safety outcomes. Therefore, this paper explores the use of evolutionary game theory to describe the interactions among the stakeholders in China’s coal-mine safety production system, which includes the organization, the first-line miners, and the first-line managers. Moreover, the paper also explores dynamic simulations of the evolutionary game model to analyze the stability of stakeholder interactions and to identify equilibrium solutions. The simulation results show that when certain conditions are met, the decision-making behavior of the organization, miners, and managers can evolve into the unique ideal steady state (1, 1, 1). In addition, the strategy portfolio with a relatively high initial proportion of three agents converges more quickly to an ideal state than a relatively low strategy portfolio. Moreover, the stable state and equilibrium values are not affected by the initial value changes. Finally, we find that the combination of positive incentive policies and strict penalties policies can make the evolutionary game system converge to desired stability faster. The application of the evolutionary game and numerical simulation when simulating the multiplayer game process of coal-mine safety production is an effective way, which provides a more effective solution to the safety and sustainable development of coal mining industry.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Rongwu Lu ◽  
Xinhua Wang ◽  
Hao Yu ◽  
Dan Li

Coal mine safety management involves many interested parties and there are complex relationships between them. According to game theory, a multiparty evolutionary game model is established to analyze the selection of strategies. Then, a simplified three-party model is taken as an example to carry out detailed analysis and solution. Based on stability theory of dynamics system and phase diagram analysis, this article studies replicator dynamics of the evolutionary model to make an optimization analysis of the behaviors of those interested parties and the adjustment mechanism of safety management policies and decisions. The results show how the charge of supervision of government department and inspection of coal mine enterprise impact the efficiency of safety management and the effect of constraint measures and incentive and other measures in safety management.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xinhua Wang ◽  
Rongwu Lu ◽  
Hao Yu ◽  
Dan Li

In this paper, we try to find the right control method for the game behavior instability in coal mine safety management. Through the analysis and comparison of the system stability with inflexible and flexible costs and penalties, it can be concluded that the dynamical game system with flexible costs (incentive rewards) and flexible penalty mechanism can significantly reduce the dynamics of unsafe behaviors in coal mine safety supervision. A combined mechanism of incentive rewards and flexible penalty is put forward to improve the stability of the dynamical system and control the instability of behaviors effectively. The results of model simulation show that the combined mechanism has very good property and can optimize and control the instability of behaviors and strategies of the interested parties. Based on the theoretical conclusions, some control strategies and policy advice are proposed for the improvement of the system and measures of safety management for government departments.


2012 ◽  
Vol 14 (4) ◽  
pp. 454-459
Author(s):  
Xiaobo XU ◽  
Hualing WU ◽  
Jianqiang WANG ◽  
Shengping WANG

Sign in / Sign up

Export Citation Format

Share Document