scholarly journals Relax-Tighten-Round Algorithm for Optimal Placement and Control of Valves and Chlorine Boosters in Water Networks

Author(s):  
Filippo Pecci ◽  
Ivan Stoianov ◽  
Avi Ostfeld
2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Satyam Paul ◽  
Wen Yu ◽  
Xiaoou Li

This paper provides an overview of building structure modeling and control under bidirectional seismic waves. It focuses on different types of bidirectional control devices, control strategies, and bidirectional sensors used in structural control systems. This paper also highlights the various issues like system identification techniques, the time-delay in the system, estimation of velocity and position from acceleration signals, and optimal placement of the sensors and control devices. The importance of control devices and its applications to minimize bidirectional vibrations has been illustrated. Finally, the applications of structural control systems in real buildings and their performance have been reviewed.


Machines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 55
Author(s):  
Michiel Haemers ◽  
Clara-Mihaela Ionescu ◽  
Kurt Stockman ◽  
Stijn Derammelaere

For complex systems, it is not easy to obtain optimal designs for the hardware architecture and control configurations. Every design aspect influences the final performance, and often the interactions of the different components cannot be clearly determined in advance. In this work, a novel co-design optimization method was applied that allows the optimal placement and selection of actuators and sensors to be performed simultaneously with the determination of the control architecture and associated controller tuning parameters. This novel co-design method was applied to a state-space model of a downscaled active car suspension laboratory setup. This setup mimics a car driving over a specific road surface while active components in the suspension have to increase the driver’s comfort by counteracting unwanted vibrations. The result of this co-design optimization methodology is a Pareto front that graphically represents the trade-off between the maximum performance and the total implementation cost; the co-design results were validated with measurements of the physical active car suspension setup. The obtained controller tuning parameters are compared herein with existing controller tuning methods to demonstrate that the co-design method is able to determine optimal controller tuning parameters.


Author(s):  
Zhong-Jie Wang ◽  
Shu-Ying Yuan ◽  
Xuan Zhao ◽  
Cheng-Chao Lu

Phase measurement unit (PMU) is the key equipment for electric power system, which has been used to monitor and control power grid. But it is too expensive to deploy on each bus. So, we need to investigate how to deploy PMU to satisfy our observation requirements with minimum PMU numbers. This problem is called the optimal PMU placement (OPP). In this paper, we employ differential evolution (DE) algorithm to solve the OPP problem. Our optimization target is to make the power grid completely observable with maximum redundancy and minimum number of PMU. The proposed method is tested on IEEE 14-bus system, IEEE 30-bus system and IEEE 57-bus system respectively with considering the zero injection.


Sign in / Sign up

Export Citation Format

Share Document