Involvement of prostacyclin and potassium channels in the diabetes-induced hyporeactivity of the rabbit carotid artery to B-type natriuretic peptide

2013 ◽  
Vol 701 (1-3) ◽  
pp. 159-167 ◽  
Author(s):  
José M. Centeno ◽  
Vannina G. Marrachelli ◽  
Luis Miranda ◽  
María Castelló-Ruiz ◽  
María C. Burguete ◽  
...  
1994 ◽  
Vol 266 (5) ◽  
pp. H2061-H2067 ◽  
Author(s):  
S. Najibi ◽  
C. L. Cowan ◽  
J. J. Palacino ◽  
R. A. Cohen

The effect of hypercholesterolemia for 10 wk on endothelium-dependent relaxations to acetylcholine was studied in isolated rings of rabbit carotid artery and abdominal aorta contracted with phenylephrine or elevated potassium. In these arteries obtained from hypercholesterolemic rabbits, endothelium-dependent relaxations to acetylcholine were not significantly different from those of normal rabbits. In normal and hypercholesterolemic arteries, partial relaxation persisted in the presence of NG-nitro-L-arginine methyl ester (L-NAME), which blocked acetylcholine-induced increases in arterial guanosine 3',5'-cyclic monophosphate (cGMP). Combined treatment with L-NAME and the calcium-dependent potassium-channel inhibitor, charybdotoxin, blocked relaxations in both groups, suggesting that L-NAME-resistant relaxations are mediated by an endothelium-derived hyperpolarizing factor. Charybdotoxin alone or depolarizing potassium had no significant effect on normal carotid artery or normal and hypercholesterolemic abdominal aorta but significantly inhibited relaxations of the carotid artery from cholesterol-fed rabbits. The enhanced role of calcium-dependent potassium channels and the hyperpolarizing factor in relaxation of the hypercholesterolemic carotid artery suggested by these results was likely related to the fact that acetylcholine failed to stimulate cGMP only in that artery. These data suggest that endothelium-dependent relaxation in these rabbit arteries is mediated by nitric oxide-cGMP-dependent and -independent mechanisms. In hypercholesterolemia, the contribution of nitric oxide-cGMP in the carotid artery is reduced, but a hyperpolarizing factor and calcium-dependent potassium channels maintain normal acetylcholine-induced relaxation.


2011 ◽  
Vol 63 (3) ◽  
pp. 190-198 ◽  
Author(s):  
Vannina G. Marrachelli ◽  
Francisco J. Miranda ◽  
José M. Centeno ◽  
Ignacio Miranda ◽  
María Castelló-Ruiz ◽  
...  

2019 ◽  
Vol 853 ◽  
pp. 33-40 ◽  
Author(s):  
José M. Centeno ◽  
Mikahela A. López-Morales ◽  
Alicia Aliena-Valero ◽  
Teresa Jover-Mengual ◽  
María C. Burguete ◽  
...  

1992 ◽  
Vol 12 (10) ◽  
pp. 1206-1213 ◽  
Author(s):  
S Kaul ◽  
R C Padgett ◽  
B J Waack ◽  
R M Brooks ◽  
D D Heistad

1995 ◽  
Vol 269 (3) ◽  
pp. H805-H811 ◽  
Author(s):  
S. Najibi ◽  
R. A. Cohen

Endothelium-dependent relaxations to acetylcholine remain normal in the carotid artery of hypercholesterolemic rabbits, but unlike endothelium-dependent relaxations of normal rabbits, they are inhibited by charybdotoxin, a specific blocker of Ca(2+)-dependent K+ channels. Because nitric oxide (NO) is the mediator of endothelium-dependent relaxation and can activate Ca(2+)-dependent K+ channels directly or via guanosine 3',5'-cyclic monophosphate, the present study investigated the role of Ca(2+)-dependent K+ channels in relaxations caused by NO, sodium nitroprusside, and 8-bromoguanosine 3',5'-cyclic monophosphate (8-Brc-GMP) in hypercholesterolemic rabbit carotid artery. Isometric tension was measured in rabbit carotid artery denuded of endothelium from normal and hypercholesterolemic rabbits which were fed 0.5% cholesterol for 12 wk. Under control conditions, relaxations to all agents were similar in normal and hypercholesterolemic rabbit arteries. Charybdotoxin had no significant effect on relaxations of normal arteries to NO, sodium nitroprusside, or 8-BrcGMP, but the Ca(2+)-dependent K+ channel blocker significantly inhibited the relaxations caused by each of these agents in the arteries from hypercholesterolemic rabbits. By contrast, relaxations to the calcium channel blocker nifedipine were potentiated to a similar extent by charybdotoxin in both groups. In addition, arteries from hypercholesterolemic rabbits relaxed less than normal to sodium nitroprusside when contracted with depolarizing potassium solution. These results indicate that although nitrovasodilator relaxations are normal in the hypercholesterolemic rabbit carotid artery, they are mediated differently, and to a greater extent, by Ca(2+)-dependent K+ channels. These data also suggest that K+ channel-independent mechanism(s) are impaired in hypercholesterolemia.


Sign in / Sign up

Export Citation Format

Share Document