Involvement of potassium channels in the protective effect of 17β-estradiol on hypercholesterolemic rabbit carotid artery

2000 ◽  
Vol 152 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Khadija Ghanam ◽  
Leng Ea-Kim ◽  
James Javellaud ◽  
Nicole Oudart
1994 ◽  
Vol 266 (5) ◽  
pp. H2061-H2067 ◽  
Author(s):  
S. Najibi ◽  
C. L. Cowan ◽  
J. J. Palacino ◽  
R. A. Cohen

The effect of hypercholesterolemia for 10 wk on endothelium-dependent relaxations to acetylcholine was studied in isolated rings of rabbit carotid artery and abdominal aorta contracted with phenylephrine or elevated potassium. In these arteries obtained from hypercholesterolemic rabbits, endothelium-dependent relaxations to acetylcholine were not significantly different from those of normal rabbits. In normal and hypercholesterolemic arteries, partial relaxation persisted in the presence of NG-nitro-L-arginine methyl ester (L-NAME), which blocked acetylcholine-induced increases in arterial guanosine 3',5'-cyclic monophosphate (cGMP). Combined treatment with L-NAME and the calcium-dependent potassium-channel inhibitor, charybdotoxin, blocked relaxations in both groups, suggesting that L-NAME-resistant relaxations are mediated by an endothelium-derived hyperpolarizing factor. Charybdotoxin alone or depolarizing potassium had no significant effect on normal carotid artery or normal and hypercholesterolemic abdominal aorta but significantly inhibited relaxations of the carotid artery from cholesterol-fed rabbits. The enhanced role of calcium-dependent potassium channels and the hyperpolarizing factor in relaxation of the hypercholesterolemic carotid artery suggested by these results was likely related to the fact that acetylcholine failed to stimulate cGMP only in that artery. These data suggest that endothelium-dependent relaxation in these rabbit arteries is mediated by nitric oxide-cGMP-dependent and -independent mechanisms. In hypercholesterolemia, the contribution of nitric oxide-cGMP in the carotid artery is reduced, but a hyperpolarizing factor and calcium-dependent potassium channels maintain normal acetylcholine-induced relaxation.


2013 ◽  
Vol 701 (1-3) ◽  
pp. 159-167 ◽  
Author(s):  
José M. Centeno ◽  
Vannina G. Marrachelli ◽  
Luis Miranda ◽  
María Castelló-Ruiz ◽  
María C. Burguete ◽  
...  

2019 ◽  
Vol 853 ◽  
pp. 33-40 ◽  
Author(s):  
José M. Centeno ◽  
Mikahela A. López-Morales ◽  
Alicia Aliena-Valero ◽  
Teresa Jover-Mengual ◽  
María C. Burguete ◽  
...  

1992 ◽  
Vol 12 (10) ◽  
pp. 1206-1213 ◽  
Author(s):  
S Kaul ◽  
R C Padgett ◽  
B J Waack ◽  
R M Brooks ◽  
D D Heistad

1995 ◽  
Vol 269 (3) ◽  
pp. H805-H811 ◽  
Author(s):  
S. Najibi ◽  
R. A. Cohen

Endothelium-dependent relaxations to acetylcholine remain normal in the carotid artery of hypercholesterolemic rabbits, but unlike endothelium-dependent relaxations of normal rabbits, they are inhibited by charybdotoxin, a specific blocker of Ca(2+)-dependent K+ channels. Because nitric oxide (NO) is the mediator of endothelium-dependent relaxation and can activate Ca(2+)-dependent K+ channels directly or via guanosine 3',5'-cyclic monophosphate, the present study investigated the role of Ca(2+)-dependent K+ channels in relaxations caused by NO, sodium nitroprusside, and 8-bromoguanosine 3',5'-cyclic monophosphate (8-Brc-GMP) in hypercholesterolemic rabbit carotid artery. Isometric tension was measured in rabbit carotid artery denuded of endothelium from normal and hypercholesterolemic rabbits which were fed 0.5% cholesterol for 12 wk. Under control conditions, relaxations to all agents were similar in normal and hypercholesterolemic rabbit arteries. Charybdotoxin had no significant effect on relaxations of normal arteries to NO, sodium nitroprusside, or 8-BrcGMP, but the Ca(2+)-dependent K+ channel blocker significantly inhibited the relaxations caused by each of these agents in the arteries from hypercholesterolemic rabbits. By contrast, relaxations to the calcium channel blocker nifedipine were potentiated to a similar extent by charybdotoxin in both groups. In addition, arteries from hypercholesterolemic rabbits relaxed less than normal to sodium nitroprusside when contracted with depolarizing potassium solution. These results indicate that although nitrovasodilator relaxations are normal in the hypercholesterolemic rabbit carotid artery, they are mediated differently, and to a greater extent, by Ca(2+)-dependent K+ channels. These data also suggest that K+ channel-independent mechanism(s) are impaired in hypercholesterolemia.


2016 ◽  
Vol 48 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Virginia M. Miller ◽  
Gregory D. Jenkins ◽  
Joanna M. Biernacka ◽  
John A. Heit ◽  
Gordon S. Huggins ◽  
...  

Prior to the initiation of menopausal hormone treatment (MHT), genetic variations in the innate immunity pathway were found to be associated with carotid artery intima-medial thickness (CIMT) and coronary arterial calcification (CAC) in women ( n = 606) enrolled in the Kronos Early Estrogen Prevention Study (KEEPS). Whether MHT might affect these associations is unknown. The association of treatment outcomes with variation in the same 764 candidate genes was evaluated in the same KEEPS participants 4 yr after randomization to either oral conjugated equine estrogens (0.45 mg/day), transdermal 17β-estradiol (50 μg/day), each with progesterone (200 mg/day) for 12 days each month, or placebo pills and patch. Twenty SNPs within the innate immunity pathway most related with CIMT after 4 yr were not among those associated with CIMT prior to MHT. In 403 women who completed the study in their assigned treatment group, single nucleotide polymorphisms (SNPs) within the innate immunity pathway were found to alter the treatment effect on 4 yr change in CIMT (i.e., significant interaction between treatment and genetic variation in the innate immunity pathway; P < 0.001). No SNPs by treatment effects were observed with changes of CAC >5 Agatston units after 4 yr. Results of this study suggest that hormonal status may interact with genetic variants to influence cardiovascular phenotypes, specifically, the pharmacogenomic effects within the innate immunity pathway for CIMT.


1998 ◽  
Vol 80 (09) ◽  
pp. 512-518 ◽  
Author(s):  
Frédérique Dol ◽  
André Bernat ◽  
Robert Falotico ◽  
Alain Lalé ◽  
Pierre Savi ◽  
...  

SummaryIt is unknown whether the addition of aspirin might increase both the efficacy and the potency of clopidogrel, a potent and selective ADP blocker. For that purpose, the efficacy of clopidogrel (1–20 mg/kg, p.o.) administered orally to rabbits alone or in combination with aspirin (0.1–10 mg/kg, p.o.) was determined in several experimental models. A potent synergistic effect of the clopidogrel/aspirin association was demonstrated with regard to collagen-induced platelet aggregation measured ex vivo. Similarly, aspirin potentiated the antithrombotic activity of clopidogrel measured with regard to experimental thrombosis induced by a silk thread or on stents placed in an arteriovenous shunt, thrombus formation following electrical stimulation of the rabbit carotid artery and with regard to 111In-labeled platelet deposition on a stent implanted in an arteriovenous shunt or on the subendothelium following air drying injury of the rabbit carotid artery. A similar potentiating effect of aspirin was obtained with regard to myointimal proliferation (restenosis) in the femoral arteries of atherosclerotic rabbits which occurred as a consequence of stent placement. The clopidogrel/aspirin combination showed only additive-type effects on bleeding time prolongation induced by ear transection in the rabbit, therefore showing that combined inhibition of cyclooxygenase and ADP‘s effects provide a marked enhanced antithrombotic efficacy. Such a combination may provide substantial protection against platelet aggregation leading to thrombotic occlusion at sites of endothelial injuries and coronary artery stenosis in humans.


Sign in / Sign up

Export Citation Format

Share Document