In vitro and in silico antimalarial activity of 2-(2-hydrazinyl)thiazole derivatives

2014 ◽  
Vol 52 ◽  
pp. 138-145 ◽  
Author(s):  
Parameshwar Makam ◽  
Prasoon Kumar Thakur ◽  
Tharanikkarasu Kannan
ChemInform ◽  
2012 ◽  
Vol 43 (15) ◽  
pp. no-no
Author(s):  
Jin-Hun Park ◽  
Mohammed I. El-Gamal ◽  
Yong Sup Lee ◽  
Chang-Hyun Oh

2015 ◽  
Vol 25 (20) ◽  
pp. 4657-4663 ◽  
Author(s):  
A. Parthiban ◽  
J. Muthukumaran ◽  
Ashan Manhas ◽  
Kumkum Srivastava ◽  
R. Krishna ◽  
...  

Author(s):  
Ashis Kumar Goswami ◽  
Hemanta Kumar Sharma ◽  
Neelutpal Gogoi ◽  
Ankita Kashyap ◽  
Bhaskar Jyoti Gogoi

Background: Malaria is caused by different species of Plasmodium; among which P. falciparum is the most severe. Coptis teeta is an ethnomedicinal plant of enormous importance for tribes of north east India. Objective: In this study, the anti malarial activity of the methanol extracts of Coptis teeta was evaluated in vitro and lead identification via in silico study. Method: On the basis of the in vitro results, in silico analysis by application of different modules of Discovery Studio 2018 was performed on multiple targets of P. falciparum taking into consideration some of the compounds reported from C. teeta. Results: The IC50 of the methanol extract of Coptis teeta 0.08 µg/ml in 3D7 strain and 0.7 µg/ml in Dd2 strain of P. falciparum. From the docking study, noroxyhydrastatine was observed to have better binding affinity in comparison to chloroquine. The binding of noroxyhydrastinine with dihydroorotate dehydrogenase was further validated by molecular dynamics simulation and was observed to be significantly stable in comparison to the co-crystal inhibitor. During simulations it was observed that noroxyhydrastinine retained the interactions, giving strong indications of its effectiveness against the P. falciparum proteins and stability in the binding pocket. From the Density-functional theory analysis, the band gap energy of noroxyhydrastinine was found to be 0.186 Ha indicating a favourable interaction. Conclusion: The in silico analysis as an addition to the in vitro results provide strong evidence of noroxyhydrastinine as an anti malarial agent.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Letícia Tiburcio Ferreira ◽  
Juliana Rodrigues ◽  
Gustavo Capatti Cassiano ◽  
Tatyana Almeida Tavella ◽  
Kaira Cristina Peralis Tomaz ◽  
...  

ABSTRACT Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


2018 ◽  
Vol 16 (2) ◽  
pp. 160-173 ◽  
Author(s):  
Mir Mohammad Masood ◽  
Mohammad Irfan ◽  
Shadab Alam ◽  
Phool Hasan ◽  
Aarfa Queen ◽  
...  

Background: 2,4-disubstituted-1,3-thiazole derivatives (2a–j), (3a–f) and (4a–f) were synthesized, characterized and screened for their potential as antimicrobial agents. In the preliminary screening against a panel of bacterial strains, nine compounds showed moderate to potent antibacterial activity (IC50 = 13.7-90.8 μg/ml). </P><P> Methods: In the antifungal screening, compound (4c) displayed potent antifungal activity (IC50 = 26.5 &#181;g/ml) against Candida tropicalis comparable to the standard drug, fluconazole (IC50 = 10.5 &#181;g/ml). Based on in vitro antimicrobial results, compounds 2f, 4c and 4e were selected for further pharmacological investigations. Hemolytic activity using human red blood cells (hRBCs) and cytotoxicity by MTT assay on human embryonic kidney (HEK-293) cells revealed non-toxic nature of the selected compounds (2f, 4c and 4e). To ascertain their possible mode of action, docking studies with the lead inhibitors (2f, 4c and 4e) were performed using crystal structure coordinates of bacterial methionine aminopeptidases (MetAPs), an enzyme involved in bacterial protein synthesis and maturation. Results: The results of in vitro and in silico studies provide a rationale for selected compounds (2f, 4c and 4e) to be carried forward for further structural modifications and structure-activity relationship (SAR) studies against these bacterial infections. Conclusion: The study suggested binding with one or more key amino acid residues in the active site of Streptococcus pneumoniae MetAP (SpMetAP) and Escherichia coli MetAP (EcMetAP). In silico physicochemical properties using QikProp confirmed their drug likeliness.


ChemMedChem ◽  
2009 ◽  
Vol 4 (9) ◽  
pp. 1469-1479 ◽  
Author(s):  
Fatima Bousejra-El Garah ◽  
Jean-Luc Stigliani ◽  
Frédéric Coslédan ◽  
Bernard Meunier ◽  
Anne Robert

Folia Medica ◽  
2021 ◽  
Vol 63 (5) ◽  
pp. 745-759
Author(s):  
Chaitali Lad ◽  
Ishan Panchal ◽  
Ashish Patel ◽  
Afzal Nagani ◽  
Vruti Parikh ◽  
...  

Introduction: Malaria is one of the varieties of fatal diseases caused by a protozoan parasite that is now considered to be the greatest global health challenge. A parasite of Plasmodium species triggers it transmitting the disease to humans by the bites of female Anopheles mosquitoes. Aim: To screen out designed molecules by molecular docking analysis and assess their pharmacokinetic properties using SwissADME. To synthesize the designed compounds. To characterize the synthesized compounds by TLC, melting point, IR spectroscopy, mass spectrometry, 1H NMR, and 13C NMR. To evaluate the synthesized compounds for antimalarial activity. Materials and methods: In silico analysis was performed with SWISSADME, and molecular docking was performed by AutoDock Vina version 4.2. In vitro antimalarial activity study was performed. Results: In-vitro studies of synthesized molecules showed that compounds C2 (IC50 1.23), C6 (IC50 0.48), C10 (IC50 0.79), and C14 (IC50&nbsp;0.19) possess good antimalarial activity. Conclusions: 7-chloroquinoline-piperazine derivatives exhibited potential antimalarial compounds for pf-DHFR inhibitors.


2020 ◽  
Vol 353 (7) ◽  
pp. 2000003 ◽  
Author(s):  
Mahesh Hublikar ◽  
Vikas Kadu ◽  
Jitender Kumar Dublad ◽  
Dattatraya Raut ◽  
Sachin Shirame ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document