dhfr inhibitors
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 27)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 14 (12) ◽  
pp. 1246
Author(s):  
Matteo Santucci ◽  
Rosaria Luciani ◽  
Eleonora Gianquinto ◽  
Cecilia Pozzi ◽  
Flavio di Pisa ◽  
...  

Three open-source anti-kinetoplastid chemical boxes derived from a whole-cell phenotypic screening by GlaxoSmithKline (Tres Cantos Anti-Kinetoplastid Screening, TCAKS) were exploited for the discovery of a novel core structure inspiring new treatments of parasitic diseases targeting the trypansosmatidic pteridine reductase 1 (PTR1) and dihydrofolate reductase (DHFR) enzymes. In total, 592 compounds were tested through medium-throughput screening assays. A subset of 14 compounds successfully inhibited the enzyme activity in the low micromolar range of at least one of the enzymes from both Trypanosoma brucei and Lesihmania major parasites (pan-inhibitors), or from both PTR1 and DHFR-TS of the same parasite (dual inhibitors). Molecular docking studies of the protein–ligand interaction focused on new scaffolds not reproducing the well-known antifolate core clearly explaining the experimental data. TCMDC-143249, classified as a benzenesulfonamide derivative by the QikProp descriptor tool, showed selective inhibition of PTR1 and growth inhibition of the kinetoplastid parasites in the 5 μM range. In our work, we enlarged the biological profile of the GSK Kinetobox and identified new core structures inhibiting selectively PTR1, effective against the kinetoplastid infectious protozoans. In perspective, we foresee the development of selective PTR1 and DHFR inhibitors for studies of drug combinations.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6721
Author(s):  
João A. Baptista ◽  
Mário T. S. Rosado ◽  
Ricardo A. E. Castro ◽  
António O. L. Évora ◽  
Teresa M. R. Maria ◽  
...  

In this work, co-crystal screening was carried out for two important dihydrofolate reductase (DHFR) inhibitors, trimethoprim (TMP) and pyrimethamine (PMA), and for 2,4-diaminopyrimidine (DAP), which is the pharmacophore of these active pharmaceutical ingredients (API). The isomeric pyridinecarboxamides and two xanthines, theophylline (THEO) and caffeine (CAF), were used as co-formers in the same experimental conditions, in order to evaluate the potential for the pharmacophore to be used as a guide in the screening process. In silico co-crystal screening was carried out using BIOVIA COSMOquick and experimental screening was performed by mechanochemistry and supported by (solid + liquid) binary phase diagrams, infrared spectroscopy (FTIR) and X-ray powder diffraction (XRPD). The in silico prediction of low propensities for DAP, TMP and PMA to co-crystallize with pyridinecarboxamides was confirmed: a successful outcome was only observed for DAP + nicotinamide. Successful synthesis of multicomponent solid forms was achieved for all three target molecules with theophylline, with DAP co-crystals revealing a greater variety of stoichiometries. The crystalline structures of a (1:2) TMP:THEO co-crystal and of a (1:2:1) DAP:THEO:ethyl acetate solvate were solved. This work demonstrated the possible use of the pharmacophore of DHFR inhibitors as a guide for co-crystal screening, recognizing some similar trends in the outcome of association in the solid state and in the molecular aggregation in the co-crystals, characterized by the same supramolecular synthons.


Folia Medica ◽  
2021 ◽  
Vol 63 (5) ◽  
pp. 745-759
Author(s):  
Chaitali Lad ◽  
Ishan Panchal ◽  
Ashish Patel ◽  
Afzal Nagani ◽  
Vruti Parikh ◽  
...  

Introduction: Malaria is one of the varieties of fatal diseases caused by a protozoan parasite that is now considered to be the greatest global health challenge. A parasite of Plasmodium species triggers it transmitting the disease to humans by the bites of female Anopheles mosquitoes. Aim: To screen out designed molecules by molecular docking analysis and assess their pharmacokinetic properties using SwissADME. To synthesize the designed compounds. To characterize the synthesized compounds by TLC, melting point, IR spectroscopy, mass spectrometry, 1H NMR, and 13C NMR. To evaluate the synthesized compounds for antimalarial activity. Materials and methods: In silico analysis was performed with SWISSADME, and molecular docking was performed by AutoDock Vina version 4.2. In vitro antimalarial activity study was performed. Results: In-vitro studies of synthesized molecules showed that compounds C2 (IC50 1.23), C6 (IC50 0.48), C10 (IC50 0.79), and C14 (IC50 0.19) possess good antimalarial activity. Conclusions: 7-chloroquinoline-piperazine derivatives exhibited potential antimalarial compounds for pf-DHFR inhibitors.


2021 ◽  
Vol 118 (25) ◽  
pp. e2025172118
Author(s):  
Wassihun Wedajo Aragaw ◽  
Brendon M. Lee ◽  
Xuan Yang ◽  
Matthew D. Zimmerman ◽  
Martin Gengenbacher ◽  
...  

Triaza-coumarin (TA-C) is a Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitor with an IC50 (half maximal inhibitory concentration) of ∼1 µM against the enzyme. Despite this moderate target inhibition, TA-C shows exquisite antimycobacterial activity (MIC50, concentration inhibiting growth by 50% = 10 to 20 nM). Here, we investigated the mechanism underlying this potency disconnect. To confirm that TA-C targets DHFR and investigate its unusual potency pattern, we focused on resistance mechanisms. In Mtb, resistance to DHFR inhibitors is frequently associated with mutations in thymidylate synthase thyA, which sensitizes Mtb to DHFR inhibition, rather than in DHFR itself. We observed thyA mutations, consistent with TA-C interfering with the folate pathway. A second resistance mechanism involved biosynthesis of the redox coenzyme F420. Thus, we hypothesized that TA-C may be metabolized by Mtb F420–dependent oxidoreductases (FDORs). By chemically blocking the putative site of FDOR-mediated reduction in TA-C, we reproduced the F420-dependent resistance phenotype, suggesting that F420H2-dependent reduction is required for TA-C to exert its potent antibacterial activity. Indeed, chemically synthesized TA-C-Acid, the putative product of TA-C reduction, displayed a 100-fold lower IC50 against DHFR. Screening seven recombinant Mtb FDORs revealed that at least two of these enzymes reduce TA-C. This redundancy in activation explains why no mutations in the activating enzymes were identified in the resistance screen. Analysis of the reaction products confirmed that FDORs reduce TA-C at the predicted site, yielding TA-C-Acid. This work demonstrates that intrabacterial metabolism converts TA-C, a moderately active “prodrug,” into a 100-fold-more-potent DHFR inhibitor, thus explaining the disconnect between enzymatic and whole-cell activity.


Author(s):  
Hussein I. El-Subbagh ◽  
Mohamed A. Sabry

: Antifolates are a class of drugs used as antibacterial, antiparasitic, and anticancer agents. This review focuses on 2-substituted-mercapto-quinazolin-4(3H)-one analogues as dihydrofolate reductase (DHFR) inhibitors. Several research efforts have concluded a structural model for this class of 2-thio-quinazoline derivatives to get compounds with remarkable biological activity. The pattern and orientation of the -system substitutions with regard to the quinazoline nucleus manipulate the activity. The application of the obtained model criteria produced compounds 18, 20, and 21, which proved to be 4-8 times more active than the reference drug methotrexate (MTX, 1).


Sign in / Sign up

Export Citation Format

Share Document