scholarly journals Second-generation TNFα turnover model for improved analysis of test compound interventions in LPS challenge studies

Author(s):  
Julia Larsson ◽  
Edmund Hoppe ◽  
Michael Gautrois ◽  
Marija Cvijovic ◽  
Mats Jirstrand
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chi-Wei Chang ◽  
Chuang-Hsin Chiu ◽  
Ming-Hsien Lin ◽  
Hung-Ming Wu ◽  
Tsung-Hsun Yu ◽  
...  

Abstract Background Expression of translocator protein (TSPO) on the outer mitochondrial membrane of activated microglia is strongly associated with neuroinflammation. The second-generation PET ligand [18F]FEPPA specifically binds TSPO to enable in vivo visualization and quantification of neuroinflammation. We optimized a fully automated radiosynthesis method and evaluated the utility of [18F]FEPPA, the second-generation PET ligand specifically binds TSPO, in a mouse model of systemic LPS challenge to detect TSPO-associated signals of central and peripheral inflammation. In vivo dynamic PET/MR imaging was performed in LPS-induced and control mice after [18F]FEPPA administration. The relationship between the [18F]FEPPA signal and the dose of LPS was assessed. The cytokine levels (i.e., TNF-α, Il-1β, Il-6) in LPS-induced mice were measured by RT-PCR. Standard uptake value (SUV), total volume of distribution (VT) and area under the curve (AUC) were determined based on the metabolite-uncorrected plasma input function. Western blotting and immunostaining were used to measure TSPO expression in the brain. Results The fully automated [18F]FEPPA radiosynthesis produced an uncorrected radiochemical yield of 30 ± 2% within 80 min, with a radiochemical purity greater than 99% and specific activity of 148.9‒216.8 GBq/µmol. Significant differences were observed in the brain after [18F]FEPPA administration: SUV, VT and AUC were 1.61 ± 0.1, 1.25 ± 0.12 and 1.58 ± 0.09-fold higher in LPS-injected mice than controls. TNF-α, Il-1β and Il-6 mRNA levels were also elevated in the brains of LPS-injected mice. Western blotting revealed TSPO (p < 0.05) and Iba-1 (p < 0.01) were upregulated in the brain after LPS administration. In LPS-injected mice, TSPO immunoactivity colocalized with Iba-1 in the cerebrum and TSPO was significantly overexpressed in the hippocampus and cerebellum. The peripheral organs (heart, lung) of LPS-injected mice had higher [18F]FEPPA signal-to-noise ratios than control mice. Conclusions Based on the current data on ligand specificity and selectivity in central tissues using 7 T PET/MR imaging, we demonstrate that [18F]FEPPA accumulations significant increased in the specific brain regions of systemic LPS-induced neuroinflammation (5 mg/kg). Future investigations are needed to determine the sensitivity of [18F]FEPPA as a biomarker of neuroinflammation as well as the correlation between the PET signal intensity and the expression levels of TSPO.


2016 ◽  
Vol 81 ◽  
pp. 189-200 ◽  
Author(s):  
Robert Andersson ◽  
Mats Jirstrand ◽  
Lambertus Peletier ◽  
Michael J. Chappell ◽  
Neil D. Evans ◽  
...  

2020 ◽  
Author(s):  
Chi-Wei Chang ◽  
Chuang-Hsin Chiu ◽  
Ming-Hsien Lin ◽  
Hung-Ming Wu ◽  
Tsung-Hsun Yu ◽  
...  

Abstract Background: Expression of translocator protein (TSPO) on the outer mitochondrial membrane of activated microglia is strongly associated with neuroinflammation. The second-generation PET ligand [18F]FEPPA specifically binds TSPO to enable in vivo visualization and quantification of neuroinflammation. We optimized an fully automated radiosynthesis method and evaluated the utility of [18F]FEPPA, the second-generation PET ligand specifically binds TSPO, in a mouse model of systemic LPS challenge to detect TSPO-associated signals of central and peripheral inflammation. In vivo dynamic PET/MR imaging was performed in LPS-induced and control mice after [18F]FEPPA administration. The relationship between the [18F]FEPPA signal and the dose of LPS was assessed. The cytokine levels (i.e. TNF-α, Il-1β, Il-6) in LPS-induced mice were measured by RT-PCR. Standard uptake value (SUV), total volume of distribution (VT) and area under the curve (AUC) were determined based on the metabolite-uncorrected plasma input function. Western blotting and immunostaining were used to measure TSPO expression in the brain. Results: The fully automated [18F]FEPPA radiosynthesis produced an uncorrected radiochemical yield of 30 ± 2% within 80 min, with a radiochemical purity greater than 99% and specific activity of 148.9‒216.8 GBq/µmol. Significant differences were observed in the brain after [18F]FEPPA administration: SUV, VT, and AUC were 1.61 ± 0.1, 1.25 ± 0.12, and 1.58 ± 0.09-fold higher in LPS-injected mice than controls. TNF-α, Il-1β and Il-6 mRNA levels were also elevated in the brains of LPS-injected mice. Western blotting revealed TSPO (p<0.05) and Iba-1 (p<0.01) were upregulated in the brain after LPS administration. In LPS-injected mice, TSPO immunoactivity colocalized with Iba-1 in the cerebrum and TSPO was significantly overexpressed in the hippocampus and cerebellum. The peripheral organs (heart, lung) of LPS-injected mice had higher [18F]FEPPA signal-to-noise ratios than control mice. Conclusions: Based on the robust data on ligand specificity and selectivity in both central and peripheral tissues using 7T PET/MR imaging, we demonstrate that the high affinity, stability and high-contrast visualization indicate detection of TSPO using [18F]FEPPA represents a promising, specific biomarker for early diagnosis and neuropathological follow-up of neuroinflammatory processes.


2008 ◽  
Vol 41 (14) ◽  
pp. 23
Author(s):  
SHERRY BOSCHERT
Keyword(s):  

1986 ◽  
Vol 31 (12) ◽  
pp. 973-974
Author(s):  
Eugene E. Levitt
Keyword(s):  

1986 ◽  
Vol 31 (5) ◽  
pp. 355-356 ◽  
Author(s):  
Janet Shibley Hyde
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document