translocator protein
Recently Published Documents


TOTAL DOCUMENTS

936
(FIVE YEARS 276)

H-INDEX

63
(FIVE YEARS 10)

2022 ◽  
pp. jnumed.121.263168
Author(s):  
Jae-Hoon Lee ◽  
Fabrice G. Simeon ◽  
Jeih-San Liow ◽  
Cheryl L. Morse ◽  
Robert L. Gladding ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Yo-Han Joo ◽  
Min-Woo Lee ◽  
Young-Don Son ◽  
Keun-A Chang ◽  
Maqsood Yaqub ◽  
...  

Adiponectin is an adipokine that mediates cellular cholesterol efflux and plays important roles in neuroinflammatory processes. In this study, we undertook positron emission tomography (PET) with the translocator protein (TSPO) ligand [11C]PK11195 and measured serum adiponectin levels in groups of treatment-naïve young adult patients with major depressive disorder (MDD) and matched healthy controls. Thirty treatment-naïve MDD patients (median age: 24 years) and twenty-three healthy controls underwent [11C]PK11195 PET. We quantified TSPO availability in brain as the [11C]PK11195 binding potential (BPND) using a reference tissue model in conjunction with the supervised cluster analysis (SVCA4) algorithm. Age, sex distribution, body mass index, and serum adiponectin levels did not differ between the groups. Between-group analysis using a region-of-interest approach showed significantly higher [11C]PK11195 BPND in the left anterior and right posterior cingulate cortices in MDD patients than in controls. Serum adiponectin levels had significant negative correlations with [11C]PK11195 BPND in the bilateral hippocampus in MDD patients, but significant positive correlations in the bilateral hippocampus in the control group. Our results indicate significantly higher TSPO binding in the anterior and posterior cingulate cortices in treatment-naïve young MDD patients, suggesting microglial activation in these limbic regions, which are involved in cognitive and emotional processing. The opposite correlations between [11C]PK11195 BPND in the hippocampus with serum adiponectin levels in MDD and control groups suggest that microglial activation in the hippocampus may respond differentially to adiponectin signaling in MDD and healthy subjects, possibly with respect to microglial phenotype.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1876
Author(s):  
Kathrine Stokholm ◽  
Majken Borup Thomsen ◽  
Jenny-Ann Phan ◽  
Line K. Møller ◽  
Cecilie Bay-Richter ◽  
...  

Progressive degeneration of dopaminergic neurons, immune activation, and α-synuclein pathology characterize Parkinson’s disease (PD). We previously reported that unilateral intranigral injection of recombinant adeno-associated viral (rAAV) vectors encoding wild-type human α-synuclein produced a rat model of early PD with dopamine terminal dysfunction. Here we tested the hypothesis that decreases in dopamine result in increased postsynaptic dopamine D2/D3 receptor expression, neuroinflammation, and reduced synaptic vesicle glycoprotein 2A (SV2A) density. Rats were injected with rAAV encoding α-synuclein or green fluorescent protein and subjected to non-pharmacological motor tests, before euthanization at 12 weeks post-injection. We performed: 1) in situ hybridization of nigral tyrosine hydroxylase mRNA, 2) HPLC of striatal dopamine content, and 3) autoradiography with [3H]raclopride, [3H]DTBZ, [3H]GBR12935, [3H]PK11195, and [3H]UCB-J to measure binding at D2/3 receptors, vesicular monoamine transporter 2, dopamine transporters, mitochondrial translocator protein, and SV2A, respectively. rAAV-α-synuclein induced motor asymmetry and reduced tyrosine hydroxylase mRNA and dopamine content in ipsilateral brain regions. This was paralleled by elevated ipsilateral postsynaptic dopamine D2/3 receptor expression and immune activation, with no changes to synaptic SV2A density. In conclusion, α-synuclein overexpression results in dopaminergic degeneration that induced compensatory increases in D2/3 binding and immune activation, recapitulating many of the pathological characteristics of PD.


2021 ◽  
Author(s):  
Lauren H. Fairley ◽  
Kei Onn Lai ◽  
Jia Hui Wong ◽  
Anselm Vincent Salvatore ◽  
Giuseppe D’Agostino ◽  
...  

AbstractMicroglial phagocytosis is an energetically demanding process that plays a critical role in the removal of toxic aggregates of beta amyloid (Aβ) in Alzheimer’s disease (AD). Recent evidence indicates that metabolic programming may breakdown in microglia in AD, thereby disrupting this important protective function. The mechanisms coordinating mitochondrial metabolism to fuel phagocytosis in microglia remain poorly understood, however. Here we demonstrate that mitochondrial displacement of the glucose metabolizing enzyme, hexokinase-II (HK) regulates microglial metabolism and phagocytosis, and that deletion of the translocator protein (TSPO) inhibits this. TSPO is a PET-visible inflammatory biomarker and therapeutic target in AD, previously shown to regulate microglial metabolism via an unknown mechanism. Using RNAseq and proteomic analyses, we found TSPO function in the brain to be linked with the regulation of mitochondrial bioenergetics, lipid metabolism and phagocytosis. In cultured microglia, TSPO deletion was associated with elevated mitochondrial recruitment of HK, which was associated with a switch to non-oxidative glucose metabolism, reduced mitochondrial energy production, lipid storage and impaired phagocytosis. Consistent with in vitro findings, TSPO expression was also associated with phagocytic microglia in both AD brain and AD mice. Conversely, TSPO deletion in AD mice reduced phagocytic microglia and exacerbated amyloid accumulation. Based on these findings we propose that microglial TSPO functions as an immunometabolic brake via regulation of mitochondrial HK recruitment, preventing hyperglycolysis and promoting phagocytosis in AD. Further, we demonstrate that targeting mitochondrial HK may offer a novel immunotherapeutic approach to promote microglial phagocytosis in AD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clément Delage ◽  
Nicolas Vignal ◽  
Coralie Guerin ◽  
Toufik Taib ◽  
Clément Barboteau ◽  
...  

AbstractTraumatic brain injury (TBI) leads to a deleterious neuroinflammation, originating from microglial activation. Monitoring microglial activation is an indispensable step to develop therapeutic strategies for TBI. In this study, we evaluated the use of the 18-kDa translocator protein (TSPO) in positron emission tomography (PET) and cellular analysis to monitor microglial activation in a mild TBI mouse model. TBI was induced on male Swiss mice. PET imaging analysis with [18F]FEPPA, a TSPO radiotracer, was performed at 1, 3 and 7 days post-TBI and flow cytometry analysis on brain at 1 and 3 days post-TBI. PET analysis showed no difference in TSPO expression between non-operated, sham-operated and TBI mice. Flow cytometry analysis demonstrated an increase in TSPO expression in ipsilateral brain 3 days post-TBI, especially in microglia, macrophages, lymphocytes and neutrophils. Moreover, microglia represent only 58.3% of TSPO+ cells in the brain. Our results raise the question of the use of TSPO radiotracer to monitor microglial activation after TBI. More broadly, flow cytometry results point the lack of specificity of TSPO for microglia and imply that microglia contribute to the overall increase in TSPO in the brain after TBI, but is not its only contributor.


2021 ◽  
Vol 53 ◽  
pp. S184-S185
Author(s):  
K. Sakrajda ◽  
D. Szczepankiewicz ◽  
J. Nowakowska ◽  
P. Zakowicz ◽  
J. Pawlak ◽  
...  

2021 ◽  
Vol 18 ◽  
pp. 100364
Author(s):  
Chia-Hsin Cheng ◽  
Zeynab Alshelh ◽  
Yi Guan ◽  
Kimberly Sullivan ◽  
Marco L. Loggia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document