Passive film formation in dilute ionic liquid solutions on magnesium Alloy AZ31

2012 ◽  
Vol 19 ◽  
pp. 90-92 ◽  
Author(s):  
Julie-Anne Latham ◽  
Patrick C. Howlett ◽  
Douglas R. MacFarlane ◽  
Maria Forsyth
2007 ◽  
Vol 60 (1) ◽  
pp. 43 ◽  
Author(s):  
Patrick C. Howlett ◽  
Stephen Zhang ◽  
Douglas R. MacFarlane ◽  
Maria Forsyth

This work reports a preliminary exploration of the potential of the ionic liquid trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate (P6,6,6,14M3PPh) for use as a conversion coating agent for corrosion protection of magnesium alloy AZ31. Results obtained for the as received IL did not indicate any measureable improvement in protection. However, when the IL was allowed to reach equilibrium/saturation with moisture from the atmosphere, treatment with this ‘wet’ solution resulted in a substantial improvement in corrosion resistance. Preliminary electrochemical, optical, and spectroscopic characterization of the film will be presented along with a possible mechanism for film formation.


2006 ◽  
Vol 9 (11) ◽  
pp. B52 ◽  
Author(s):  
Maria Forsyth ◽  
Patrick C. Howlett ◽  
Seal K. Tan ◽  
Douglas R. MacFarlane ◽  
Nick Birbilis

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1325 ◽  
Author(s):  
Zhiyuan Feng ◽  
Jichao Li ◽  
Zi Yang ◽  
Rudolph Buchheit

The anodic polarization response of magnesium alloy AZ31 was first characterized during exposure to aerated 0.1 M NaCl solutions with millimolar additions of NaVO3, Na3PO4, Na2HPO4, NaF and various pairings to assess their ability to inhibit corrosion kinetics and retard localized corrosion. Each of the candidate inhibitors reduced the corrosion rate of the alloy to some degree. A Na3PO4–NaVO3 pair produced a good inhibiting effect decreasing the corrosion rate to about 10−7 A/cm2, which was two orders of magnitude lower than the uninhibited control case. A Bliss Independence assessment indicated that this inhibitor pair acted synergistically. A Na2HPO4–NaVO3 pair reduced the corrosion rate to 10−6 A/cm2 but was not assessed to be acting synergistically. The NaVO3–NaF pair did not reduce the corrosion rate significantly compared to the control case and was an antagonistic pairing. SEM imaging showed film formation due to exposure, which appears to be the origin of the observed inhibition. The resistance to localized corrosion was assessed as the difference in the breakdown potential and the corrosion potential, with larger values indicating a lower probability of localized corrosion during free corrosion exposures. The effects of the inhibitors on this characteristic were mixed, but each of the inhibitor pairs yielded potential differences in excess of 100 mV. A conceptual conversion coating process based on a mixture of vanadate and phosphate compounds were demonstrated. A fluoride-bearing formulation produced coatings whose total impedance was increased by a factor of two compared to an uncoated control. A fluoride-free formulation produced coatings whose corrosion resistance was increased by more than a factor of three.


Author(s):  
Zhiyuan Feng ◽  
Jichao Li ◽  
Zi Yang ◽  
Rudolph Buchheit

The anodic polarization response of magnesium alloy AZ31 was characterized during exposure to aerated 0.1M NaCl solutions with millimolar additions of NaVO3, Na3PO4, Na2HPO4, NaF and various pairings to assess their ability to inhibit corrosion kinetics and retard localized corrosion. Each of the candidate inhibitors reduced the corrosion rate of the alloy to some degree. A Na3PO4 - NaVO3 pair produced a powerful inhibiting response decreasing the corrosion rate to about 10-7 A/cm2, which was two orders of magnitude lower than the uninhibited control case. A Bliss Independence assessment indicated that this inhibitor pair acted synergistically. A Na2HPO4 - NaVO3 pair reduced the corrosion rate to 10-6 A/cm2 but was not assessed to be acting synergistically. The NaVO3 - NaF pair did not reduce the corrosion rate significantly compared to the control case and was an antagonistic pairing. SEM imaging showed film formation due to exposure, which appears to be the origins of the observed inhibition. The resistance to localized corrosion was assessed as the difference in the breakdown potential and the corrosion potential with larger values indicating a lower probability of localized corrosion during free corrosion exposures. Effects of the inhibitors on this characteristic were mixed, but each of the inhibitor pairs yielded potential differences in excess of 100mV. A conceptual conversion coating process based on a mixture of vanadate and phosphate compounds were demonstrated. A fluoride-bearing formulation produced coatings whose total impedance was increased by a factor or 2 compared to an uncoated control. A fluoride-free formulation produced coatings whose corrosion resistance was increased by more than a factor of 3.


2010 ◽  
Vol 157 (11) ◽  
pp. C392 ◽  
Author(s):  
Patrick C. Howlett ◽  
Jim Efthimiadis ◽  
Penny Hale ◽  
Grant A. van Riessen ◽  
Douglas R. MacFarlane ◽  
...  

2014 ◽  
Vol 9 (2) ◽  
pp. 249-257
Author(s):  
Chuanxing Li ◽  
Yanling Zhang ◽  
Dong Chen ◽  
Guangfeng Duan ◽  
Zhenyin Liu ◽  
...  

2021 ◽  
Vol 807 ◽  
pp. 140821
Author(s):  
Kai Zhang ◽  
Zhutao Shao ◽  
Christopher S. Daniel ◽  
Mark Turski ◽  
Catalin Pruncu ◽  
...  

Author(s):  
Kenneth J. Tam ◽  
Matthew W. Vaughan ◽  
Luming Shen ◽  
Marko Knezevic ◽  
Ibrahim Karaman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document