Novel acid-base hybrid membrane based on amine-functionalized reduced graphene oxide and sulfonated polyimide for vanadium redox flow battery

2015 ◽  
Vol 158 ◽  
pp. 24-34 ◽  
Author(s):  
Li Cao ◽  
Qingqing Sun ◽  
Yahui Gao ◽  
Luntao Liu ◽  
Haifeng Shi
Author(s):  
Qiang Li ◽  
Junnan Wang ◽  
Tianyu Zhang ◽  
Zinan Wang ◽  
Zhichao Xue ◽  
...  

Abstract In a vanadium redox flow battery, the traditional polyacrylonitrile based graphite felt (GF) electrode suffers the problems of low electrochemical catalytic activity and low specific surface area. To improve the performance of the GF electrode, we prepared phosphorus and sulphur co-doped reduced graphene oxide (PS-rGO) as catalyst with the simple treatment of reduced graphene oxide (rGO) in the mixture of phytic acid and sulfuric acid. The GF electrode modified with PS-rGO (PS-rGO-GF) was characterized by scanning electron microscope, specific surface area, X-ray photoelectron spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge tests. The PS-rGO-GF shows enhanced performance toward VO2+/VO2+ redox reaction. The battery with the PS-rGO decorated GF presents an excellent battery performance with the energy efficiency of 81.37 % at the current density of 80 mA cm-2 and the corresponding discharge capacity of 772 mAh due to the high catalytic activity of PS-rGO.


2020 ◽  
Vol 20 (8) ◽  
pp. 4714-4721 ◽  
Author(s):  
Jiaye Ye ◽  
Chun Wu ◽  
Wei Qin ◽  
Fangfang Zhong ◽  
Mei Ding

The purpose of this study was to improve the repulsion ability of sulfonated poly(ether ether ketone) (SPEEK) membrane for the vanadium ions crossover. For this purpose graphene oxide (GO) nanosheet and titanium dioxide (TiO2) nanoparticles were employed into the polymer matrix to prepare SPEEK/GO/TiO2 hybrid membrane via solution-casting method for vanadium redox flow battery (VRFB). The morphology, permeability of vanadium ions and device performance of asprepared membrane were investigated and discussed. It was observed that with the barrier block effect by the filler, the VRFB single cell with the optimized SPEEK/GO/TiO2 hybrid membrane exhibited high coulombic efficiency (~99%), excellent energy efficiency (~85%) and vigorous cyclability (~97.2% capacity retention after 100 cycles). Moreover, the VRFB cell with this blend membrane showed lower vanadium ions permeability than Nafion 212 or pure SPEEK membranes. These results demonstrated that the comprehensive properties of hybrid membrane have been remarkably improved comparing to pristine SPEEK which suggested that the hybrid membrane was applicable for VRFB energy storage system.


Sign in / Sign up

Export Citation Format

Share Document