scholarly journals Design of Polymer-Coated Multi-Walled Carbon Nanotube/Carbon Black-based Fuel Cell Catalysts with High Durability and Performance Under Non-humidified Condition

2015 ◽  
Vol 170 ◽  
pp. 1-8 ◽  
Author(s):  
Zehui Yang ◽  
Mohamed R. Berber ◽  
Naotoshi Nakashima
2015 ◽  
Vol 3 (46) ◽  
pp. 23316-23322 ◽  
Author(s):  
Zehui Yang ◽  
Naotoshi Nakashima

Low durability and performance have limited the wide commercialization of high-temperature polymer electrolyte fuel cells (HT-PEFCs).


2018 ◽  
Vol 37 (20) ◽  
pp. 1255-1266 ◽  
Author(s):  
Siriwan Jansinak ◽  
Teerasak Markpin ◽  
Ekachai Wimolmala ◽  
Sithipong Mahathanabodee ◽  
Narongrit Sombatsompop

This work investigated the cure characteristic, physical mechanical properties, and tribology behavior of carbon black filled acrylonitrile butadiene rubber composites using multi-walled carbon nanotubes as co-reinforcing additive in various contents from 0, 3, 6, 9, and 15 parts per hundred rubbers. The physical and tribological behavior was also observed in large-scale piston driven hydraulic apparatus which was specially designed for seal applications. The results suggested that the modulus and hardness were found to increase after adding multi-walled carbon nanotube whereas the tensile and tear strength were not significantly affected. Adding multi-walled carbon nanotube was found to increase the bound rubber and crosslink density. For ball-on-disc tribo-testing, it was found that the coefficient of friction of the rubber composites decreased with multi-walled carbon nanotube content and the applied loads whereas the specific wear rate was more influenced by the applied loads used. Finally, under the large-scale piston driven hydraulic test apparatus in comparison with commercial grade rubber seals, it was found that the weight loss for the acrylonitrile butadiene rubber composites with multi-walled carbon nanotube was much lower than that without multi-walled carbon nanotube. The carbon black/acrylonitrile butadiene rubber composites with 9–12 parts per hundred rubbers multi-walled carbon nanotube were recommended as the most suitable for hydraulic seal applications.


2010 ◽  
Vol 123-125 ◽  
pp. 59-62 ◽  
Author(s):  
T. Jeevananda ◽  
O.G. Palanna ◽  
Joong Hee Lee ◽  
Siddaramaiah ◽  
C. Ranganathaiah

The present study investigates the effect of the carboxylated multi-walled carbon nanotube (0~3 wt %) content on the electrical and thermal properties of high density polyethylene/carbon black/carboxylated multi-walled carbon nanotube (HDPE/CB/c-MWNT) hybrid nanocomposites. The room temperature electrical resistivity and positive temperature coefficient (PTC) intensity of the nanocomposites significantly improved with the addition of c-MWNT. However, the heat of fusion decreases as the amount of c-MWNT increases. Further, the microstructural parameters such as the fractional free volume (Fv) and free volume hole size (Vf) of the nanocomposites shows appreciable changes around the percolation threshold. Secondly, the PALS results seem to correlate well with the electrical and thermal properties of the composites.


Sign in / Sign up

Export Citation Format

Share Document