Improved ionic conductivity and battery function in a lithium iodide solid electrolyte via particle size modification

2021 ◽  
pp. 138569
Author(s):  
Mikaela R. Dunkin ◽  
Steven T. King ◽  
Kenneth J. Takeuchi ◽  
Esther S. Takeuchi ◽  
Lei Wang ◽  
...  
2021 ◽  
Vol MA2021-01 (8) ◽  
pp. 2101-2101
Author(s):  
Mikaela R. Dunkin ◽  
Steven T. King ◽  
Kenneth J. Takeuchi ◽  
Esther S. Takeuchi ◽  
Lei Wang ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

As flexible all-solid-state batteries are highly safe and lightweight, they can be considered as candidates for wearable energy sources. However, their performance needs to be first improved, which can be...


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 989
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

All-solid-state batteries (ASSBs) are attractive for energy storage, mainly because introducing solid-state electrolytes significantly improves the battery performance in terms of safety, energy density, process compatibility, etc., compared with liquid electrolytes. However, the ionic conductivity of the solid-state electrolyte and the interface between the electrolyte and the electrode are two key factors that limit the performance of ASSBs. In this work, we investigated the structure of a Li0.33La0.55TiO3 (LLTO) thin-film solid electrolyte and the influence of different interfaces between LLTO electrolytes and electrodes on battery performance. The maximum ionic conductivity of the LLTO was 7.78 × 10−5 S/cm. Introducing a buffer layer could drastically improve the battery charging and discharging performance and cycle stability. Amorphous SiO2 allowed good physical contact with the electrode and the electrolyte, reduced the interface resistance, and improved the rate characteristics of the battery. The battery with the optimized interface could achieve 30C current output, and its capacity was 27.7% of the initial state after 1000 cycles. We achieved excellent performance and high stability by applying the dense amorphous SiO2 buffer layer, which indicates a promising strategy for the development of ASSBs.


Author(s):  
Kentaro Yamamoto ◽  
Seunghoon Yang ◽  
Masakuni Takahashi ◽  
Koji Ohara ◽  
Tomoki Uchiyama ◽  
...  

Author(s):  
Diego Holanda Pereira de Souza ◽  
Kasper T. Møller ◽  
Stephen A. Moggach ◽  
Terry D Humphries ◽  
Anita D’Angelo ◽  
...  

Metal boron-hydrogen compounds are considered as promising solid electrolyte candidates for the development of all-solid-state batteries (ASSB), owing to the high ionic conductivity exhibited by closo- and nido-boranes. In this...


2017 ◽  
Vol 727 ◽  
pp. 1136-1141 ◽  
Author(s):  
Xiaolin Sun ◽  
Yimin Sun ◽  
Fengting Cao ◽  
Xichao Li ◽  
Shimei Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document